Weeks 1-2
1. Data organization and management
 • best practices, reproducibility, etc.
2. Basic programming fundamentals for data curation
 • The Unix environment and fundamental commands
 • Formatting and manipulating tabular text files from the terminal
3. Introduction to R and Rstudio
 • Installation/Updates
 • R object types and assignment
4. Practice with R objects
 • vectors, matrices, data frames, etc.
5. Applying core programming fundamentals in R
 • vectorized operations
 • replicate, apply family, ifelse, for loops, etc.

Week 3
1. Plotting/visualizing data as a means of exploration
 • Different plot types
 • Scale, transformations, etc.
2. Fundamentals of plotting in base R
 • par
 • using palettes, points, sizes, etc. to convey information
 • axes and labels
3. R markdown

Week 4
1. Population parameters, samples, and sampling distributions
 • Central Limit Theorem and the normal dist.
 • Mean and st. dev.
2. Probability and probability distributions
3. Calculating summary statistics
 • Other common summary statistics (quantiles, etc.)

Week 5
1. Parameter estimation
 • Simulating data sets with known parameters
 • Revisit probability distributions
2. Uncertainty in estimation
 • Parametric and nonparametric approaches to uncertainty
Week 6
1. Experimental design
 • lexicon
 • considering sources of variance
 • types of variables (categorical, ordinal, rational)
 • confounding variables
2. Frequentist hypothesis testing
 • error types
 • p-values
 • degrees of freedom
 • statistical power
 • multiple testing problem

Week 7
1. Comparing means between groups
 • Student’s t-test
2. Bootstrapping and randomization to compare means

Week 8
1. Relationships between quantitative variables
 • correlation and covariance
2. Simple linear regression
 • residuals and least squares
 • fitting linear regression models

Week 9
1. Analysis of variance
 • Table components and test statistics
2. General linear models in R
 • Model formulae
 • Interpretation of summary output
3. More complex ANOVA frameworks
 • Nested models
 • Factorial models

Week 10
1. Frequency-based statistical tests
 • Chi-squared tests
 • Contingency tables and tests of independence
2. Brief introduction to generalized linear models (time permitting)
 • logistic regression