Neurodevelopmental Effects of Stunting

Jeffrey Measelle, PhD
Luang Prabang 16-18 March 2016
Aims

• ABC’s of brain development in first 1000 days: Critical role for nutrients

• Measuring effects of stunting on brain & role of neuroscience methodologies

• Examples from Laos
Healthy Brain = Healthy Future

Healthy Child Brain
• Improved health & development
• Academic success
• Social Health
• Mental Health

Healthy Adult Brain
• Improved health
• Higher earnings
• Social Health
• Mental Health
Return on early investment superior

- Programs targeted towards the earliest years: 10:1 return**
- Preschool Programs: 1:1 return
- Schooling: - 4:1 return
- Job Training

Source: Heckman and LaFontaine (2007)
Brains are built

Prenatally
- Genetics
- Nutrition
- Antenatal Care
- Low Stress

Postnatally
- Supportive care
- Nutrition
- Stimulation
- Healthy environ
- Low Stress
Best Building Window: -9 months to 24 months

Mean z scores relative to WHO standards across 54 DHS/MCIS studies, by age (1-59 mo.)

Stunting:

Key indicator of failure to thrive

Key indicator of what is not going right for the brain
80% of brain’s development occurs during first 1000 days

Courtesy: C. Nelson (2016)
Neurogenesis

Synaptogenesis

Myelinogenesis

Synaptic Reduction

80% of brain’s development occurs during first 1000 days

4 years

6 years
Micronutrients During First 1000 Days

• Specific nutrients needed for specific neural development
 • Deprivation of nutrients supporting basic neuronal/glial metabolic processes most deleterious

• Effect of nutrient deficiency or overabundance on brain governed by:
 • Timing
 • Dose
 • Duration
Micronutrients During First 1000 Days

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Period(s) of particularly high brain demand for nutrient</th>
<th>Principal brain region or circuitry affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>(1) Gestation
(2) 4–12 months postnatal</td>
<td>(1) Global, hippocampus, striatum, myelin, cerebellum
(2) Cortex (especially prefrontal), myelin
Global, retina</td>
</tr>
<tr>
<td>LCPUFAs</td>
<td>Last trimester of gestation: 2–3 months postnatal</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>(1) Last trimester of gestation
(2) 6 months–3 years postnatal</td>
<td>(1) Myelin, striatum, hippocampus
(2) Myelin, frontal cortex, basal ganglia (motor)</td>
</tr>
<tr>
<td>Zinc</td>
<td>(1) Last four months of gestation
(2) 6 months–10 years</td>
<td>(1) Autonomic nervous system, cerebellum, hippocampus
(2) Cortex</td>
</tr>
<tr>
<td>Iodine</td>
<td>(1) First trimester of gestation
(2) Last trimester of gestation
(3) Infancy–12 years</td>
<td>(1) Global
(2) Cortex, striatum, cerebellum, hippocampus
(3) Myelin, prefrontal cortex</td>
</tr>
<tr>
<td>Copper</td>
<td>Last trimester of gestation</td>
<td>Occipital and parietal cortex, striatum, cerebellum, hippocampus</td>
</tr>
</tbody>
</table>

Adapted from Wachs et al. (2014) Ann. N.Y. Acad. Sci.
Stunting damages brain architecture

Hippocampal CA1 neuron: many connections

Chronically malnourished hippocampal CA1 neuron: fewer connections

Nyaradi et al., (2013) *Front in Human Neuroscience*
Stunting damages brain architecture

Sufficient Iodine Intake

Insufficient Iodine Intake

Courtesy: Curtis Boren, USAID
Stunting damages brain architecture

Hippocampus CA1, CA3 - Healthy

Hippocampus CA1, CA3 – Prenatal protein deficiency

Maternal malnutrition predicted variation in diffuse regions important to:

- cognitive-emotional responses to stress (e.g., the right insula and dorsolateral prefrontal cortex),
- sensory processing (e.g., right middle occipital),
- socio-emotional function (e.g., the right angular gyrus, uncinate fasciculus, posterior cingulate, and parahippocampus).
- Volume differences in hippocampus.
Prenatal Maternal Iron Deficits Predicts Grey & White Matter Deficits in Newborn

DTI measures diffusion of water in brain, which is quantified as fractional anisotropy (FA)

FA decreases across 3rd T and neonatal period as structures, barriers, and myelin form

Result: Lower prenatal iron associated with higher FA throughout newborn brain and axonal pathways

Monk, Georgieff et al. (2015) J of Pediatric Research
First 1000 Days

- Period also defined by greatest brain “plasticity”
 - vulnerability
 - recovery
- As brain regions become more specialized, plasticity lost

- Vulnerability to nutritional insult > potential for repair

- Beyond critical window, little evidence of brain repair, despite some physical gains due to dietary intervention.
Little Recovery if Dietary Rehabilitation Beyond Critical Period

Healthy diet thru 24 months ($Z = +0.8$ SD)

Low Birth Weight/ Stunted at 24 months
Supplementation after 12 months
($Z = -3.28$ SD)
Little Recovery if Dietary Rehabilitation Beyond Critical Period

Glutamate Neurotransmission in Auditory Cortex

<table>
<thead>
<tr>
<th>Condition</th>
<th>24 months</th>
<th>36 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- WM = Well nourished
- UN = Undernourished (60% of WM diet beginning at 28 days)
- UNR = Dietary rehabilitation (Like UN until 42 days; then WN to 370 days)

Batista Penido et al. (2012) Nutritional Neuroscience
Interim Summary:

• Brain’s early vulnerability to nutritional insults outweighs plasticity.
• Supplementation after critical/sensitive windows of development result in incomplete correction of brain dysfunction.
• Nutrient may promote development and one time point or at one concentration, but may be toxic at another time point or concentration (e.g. iron).
• Micronutrient deficits confer long-term abnormalities on brain structures.
• How should be measure function?

Neurodevelopmental Battery to Assess Malnutrition

- Low-cost
- Easily transferred
- Reliable
- Portable
- Cross-cultural
- Sensitive to development

Physical
Biomarkers
Behavioral
Neuroimaging
Physical
Anthropometrics

- Weight
- Length/height
- Head circumference
- Mid-arm circumference
- Humorous length
- Ulna length
- Femur & tibia length
Biomarkers
Neurobehavioral
Old Fashion Way: Ask!

Maternal concerns about child’s development at 12 months:
- Attention
- Learning
- Memory

Odds of Maternal Cognitive Concerns

Bayley Mental Development Index at 24 Mos.
Neonatal Facial Imitation

- Neonates ability to mimic simple gestures within the first hours of life
- Linked to newborn myelination and cortical differentiation of brain structures
- Performance predicts later social functioning; sensory/memory and attention.
Neonatal Facial Imitation

Age: < 2 days old

- Neonates ability to mimic simple gestures within the first hours of life
- Linked to newborn myelination and cortical differentiation of brain structures
- Predicts later social functioning; sensory/memory and attention.

***Latency predicts rate of growth faltering between 6 to 12 months in full term babies (Meaney et al., 2016, in press)
Deferred Imitation

• Memory test to determine whether infants and young children can repeat actions demonstrated to them with novel toys.
• Linked to hippocampal and anterior cingulate
• Predicts learning, working memory, executive functioning

Ages: 6, 12, 24, and 36 months
Deferred Imitation

- Memory test to determine whether infants and young children can repeat actions demonstrated to them with novel toys.
- Linked to hippocampal and anterior cingulate
- Predicts learning, working memory, executive functioning

Ages: 6, 12, 24, and 36 months
Neuroimaging

- Ultrasound
- EEG/ERP
- fNIRS
- MRI/fMRI
Rational for Neuroscience Approach to Malnutrition

• Often more sensitive to developmental deviations than behavior (e.g., Autism; HIV)

• Can tell us about the brain circuits (component processes) that support healthy development as well as language, cognition, and emotion

• Language and cognition very primitive before 1 yr, however, functional circuits that will support behavior already forming/predictive
EEG Resting State

Optimal baseline for ERP tasks

Resting state waveform oscillations that have particular properties (frequency, amplitude, phase) that reveal information on underlying neural processes

Sensitive measure to trait levels of cortical activity – less a measure of “rest”; better measure of alertness

Peek-a-boo variation useful for detecting face-processing capacity and later level of social engagement/attunement, Attachment at 18 months
EEG Power Spectrum Analysis of 3 month old children at rest-to-Peek-a-Boo transition

Inferior temporal cortex (T4, T6, T5, T7)
Plasticity & Coherence

Black & Greenough (1986)
EEG Estimates of Cortical Coherence at 8 months

Stunted (z < -2.0)

Healthy (z > 1.0)

n= 11

n= 15
When you account for stunting:

- Healthy kids utilize attention boost to ignore distraction
- Stunted kids do not show this attention boost

Ages: (0), 6, 12, 18, and 40-42 months; 5 years

Measelle et al., (2015) SRCD
Selective Visual Attention

When you account for stunting:

• Healthy kids utilize attention boost to ignore distraction

• Stunted kids do not show this attention boost

Ages: (0), 6, 12, 18, and 40-42 months; 5 years
Measelle et al., (2015) SRCD
Cognitive Development to be Assessed by Cambridge Neuropsychological Test Automated Battery (CANTAB)

Children is to complete a series of computerized cognitive tasks that assess their:

Executive Function
- Intra-Extra Dimensional Set Shift (IED)
 - Assesses executive function by testing rule acquisition & reversal
- Stocking of Cambridge (SOC)
 - Spatial planning test which measures frontal lobe function

Decision Making & Response Control
- Information Sampling Test (IST)
 - Assesses impulsivity and decision making
- Stop Signal Task (SST)
 - Assesses one’s response control
- Stop Signal Task (SST)
 - Assesses one’s response control
- Stop Signal Task (SST)
 - Assesses one’s response control

Visual Memory
- Stop Signal Task (SST)
 - A test of visual spatial recognition memory
- Affective Go / No-Go (AGN)
 - Assesses information processing biases for positive & negative stimuli

CANTAB performed during visits at 4, 6 & 8 years old.
Validation of Lao School Readiness Battery Underway!!

48 Month School Readiness Battery

- **Peabody Picture Vocabulary Test**: This is a test of receptive vocabulary which assesses the child’s vocabulary acquisition.
- **Lollipop Test**: This test assesses the child’s ability to identify colors, shapes, numbers and letters.
- **Number Knowledge Test**: This test assesses the child’s intuitive knowledge of numbers.
- **Visually Cued Recall Test**: This test evaluates the child’s working memory through visual images and verbal information.
- **Random Object Span Test**: This test assesses the child’s visual working memory.
- **Comprehensive Test of Phonological Processing-2**: This test evaluates the child’s phonological processing as a prerequisite to reading fluency.

Panamath: This test measures the child’s number sense and approximate number system (ANS) which underlies the ability to produce abstract number representation.

Child Behavior Checklist: This checklist measures the child’s behavioral and socio-emotional functioning as reported by parents.

These tasks carried at 48 Months to assess the child’s ‘school readiness.’

Measelle et al., (2016) ICIS
Thank you

ขอบคุณ

Cảm ơn bạn

คำขอบคุณ

บันทึกไว้

บันทึกไว้