BI 358 Lecture 10

I. Announcements Dr. Padgett next Tuesday! Quiz 3 Q?

II. Vaccines for Atherosclerosis, Diabetes, Hypertension?
https://www.hindawi.com/journals/jdr/2018/1638462/#B9

III. Lymphatic System Alternative circulation Torstar, DC…

IV. Cardiovascular Physiology Torstar, G&H, Katz, LS,…

 A. ♥️ structure & function LS, Torstar, G&H fig 9-8 +… in lab!
 B. Blood flow through ♥️ & periphery G&H fig 9-1, LS…
 C. Coronary circulation & the cardiac cycle
 G&H fig 21-3, Katz, G&H fig 21-5, 21-6, 21-4, 21-7, 21-8 +…

V. CVDs Definitions, US Disease Statistics: CDC 2012 + AHA

VI. Atherosclerosis + Mechanisms Torstar Books, G&H, +…

 A. Linking proposed historical mechanisms
 Endothelial Injury Hypothesis (Ross & Glomset)
 Lipid Infiltration Hypothesis (Steinberg & Witzum) + new!
 B. Cholesterol metabolism: Dr. Kottke’s bathtub analogy
 C. 1º modifiable risks: cigarette smoking, hypertension,
 hypercholesterolemia/hyperlipidemia, lack of exercise
 D. Treatment triad, PTCA, CABG, prevention, practical tips!

VII. Additional Resources Development, electrical highway…
Remember to submit comments about Dr. Kraig’s lecture by 5 pm today!

Yes, Sherlock! Avian & human immune systems evolved from a common reptilian ancestor!!

Whoopee! For the birds??
Lymphatic System

1. Lymph Nodes
2. Vessels
3. Lymph

No pump!
Lymphatic System

Alternative System of Circulation or Drainage System

Lymph Vessels || Veins
Elephantiasis: Lymphatic Blockage Due to Mosquito-Borne Parasitic Worm

L Sherwood 2007
Cardiovascular (CV) = Heart + Vessels + Blood!
Heart Protection & Layers

Aorta
Superior vena cava
Right atrium
Right ventricle
Inferior vena cava

Pericardial cavity
Fibrous pericardium
Parietal pericardium

EPI
MYO
ENDO

Torstar 1984 p 34
What the heck’s a *bruit*? (brwe, brőot) [Fr.] sound ≥ 25 subclassifications!

Aneurysmal *b.* a blowing sound over an aneurysm.

b. de canon [Fr. sound of cannon] abnormally loud 1st heart sound heard in complete heart block.

b. de craquement [Fr. sound of crackling] a crackling pericardial or pleural bruit.

False *b.* artifact caused by pressure of the stethoscope or derived from circulation of the ear.

b. de lime [Fr. sound of a file] cardiac sound resembling filing.
Human heart = 4-chambered box? 2 separate pumps?

Upper = Atria

Lower = Ventricles

Pulmonary Systemic

RA ➔ RV ➔ LA ➔ LV

Primer Pumps ➔ Power Pumps
Coarctation, Crimping or Narrowing of the Aorta

Human ° = 4 unique valves?
2 valve sets?

Semilunar = Half-moon shaped
1. Pulmonic/Pulmonary
2. Aortic

AV = Atrioventricular
3. $\bullet R$ AV = Tricuspid
4. $\bullet L$ AV = Mitral/Bicuspid
Heart Valve Orientation & Scaffolding

- Pulmonary ring
- Aortic ring
- Mitral ring
- Tricuspid ring
- Muscle fiber
TAVR Transcatheter Aortic Valve Replacement

Dr. Padgett is a TAVR pro & doing several right now!

https://www.mayoclinic.org/tests-procedures/transcatheter-aortic-valve-replacement/about/pac-20384698
Veins → Atria → Ventricles → Arteries

Superior vena cava (from head)
Right atrium
Inferior vena cava (from body)
Right ventricle

Aorta
Left atrium
Left ventricle
Pericardium
Endocardium
Myocardium

https://www.mayoclinic.org/diseases-conditions/heart-disease/multimedia/circulatory-system/vid-20084745

cf: G&H
fig 9-1
2011 & 2016 ed

LS2016
Coronary Circulation ≡ Crowns the Heart!
Heart Dominance May Influence Survival?

Fig. 1.9. Diagrammatic views of the posterior surfaces of the human heart showing left (A) and right dominant (B) patterns of coronary artery supply. In the left dominant pattern, the posterior descending artery (PDA) is supplied by the circumflex branch of the left coronary artery (CIRC). In the right dominant pattern, the posterior descending artery is supplied by the right coronary artery (RCA). Other abbreviations: LAD, left anterior descending coronary artery; LA, left atrium; RA, right atrium; LV, left ventricle; RV, right ventricle; SVC, superior vena cava; IVC, inferior vena cava.
Coronary Arteries Pierce the Heart from Epi to Endo
Anastomoses May Provide Lifesaving Collateral Circulation!!
Cardiac Cycle

Systole
Contract & Empty

Diastole
Relax & Fill
Did you know?

- Every 40 seconds, someone has a heart attack in the US!
- ~630,000 Americans die of heart disease each yr – that’s 1 in every 4 deaths. Heart disease is the leading cause of death for both men and women.
- Heart disease costs the US ~ $200 billion per yr in health care, medications & lost productivity. By 2035, CVD costs are projected to top $1 trillion annually.

Heart Disease Death Rates, 2014-2016
Adults, Ages 35+, by County

Rates are spatially smoothed to enhance the stability of rates in counties with small populations.

Data Source: National Vital Statistics System
National Center for Health Statistics

https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_heart_disease.htm
FIGURE 9-35
Extent of myocardial damage as a function of the size of the occluded vessel
What is the Ultimate Cause of Death?

1. ↓ Q, CO or Cardiac Output
2. Pulmonary damming w/edema
3. Cardiac fibrillation
4. Cardiac rupture (occasionally)
5. Thromboembolism (2011 ed. but not 2016)
Systolic Stretch Due to Necrotic Tissue

- Normal Muscle
- Nonfunctional Muscle
- Systolic Stretch
Treatment Triad

Drugs/Surgery

Exercise

Dietary Modification

NB: Last blasted resort!!
An LDL to HDL ratio greater than 5 to 1 in men or 4.5 to 1 in women.

Increased risk of heart disease
The diagram illustrates the composition of LDL and HDL particles, showing differences in lipid and protein content.

LDL (Low-Density Lipoprotein): More lipid, less protein.
- Protein: 20%
- Cholesterol: 40%
- Phospholipid: 20%
- Triglyceride: 20%

HDL (High-Density Lipoprotein): Less lipid, more protein.
- Protein: 40%
- Cholesterol: 40%
- Phospholipid: 20%
- Triglyceride: 10%

Lower density particles (LDL) are associated with an increased risk of heart disease, while higher density particles (HDL) are considered protective.
Selected Atherosclerotic Genetic Determinants – Ultra-short List!

Genes for HDL, LDL+ receptors, Apolipoproteins Apo B-100, Apo-E, Apo-M, lipoprotein a/Lp_{a}, homocysteine metabolism enzymes N5,N10-methylene-tetrahydrofolate reductase, cystathione beta-synthase, Type I antithrombin, mitochondrial haplogroup A, Protein tyrosine phosphate PTPN22 C/T single nucleotide polymorphism (SNP) @ + 1858, HMG COA reductase, SNPs in TNF-alpha, IL-1beta & TGF-beta1, IL-6, IL-10, CD14, TLR-4 receptors, Human Leukocyte Antigens HLA-DRB1*01, HLA-B*07 + haplotype LTA+253a-LTA+633g-C4A3-C4B1, HDL-associated paraoxonase (PON1), lysosomal acid lipase (LAL), MEF2A protein affecting artery walls...
Bruce Kottke’s Bathtub Analogy

5 forms of cholesterol:
Chylomicrons, VLDL, LDL, IDL, HDL

β

Atherogenic
Anti-Atherogenic

β-VLDL + LDL = Faucet

Total Cholesterol Level

HDL = Drain

Bathtub

“Don’t think the total cholesterol test by itself is worth a damn.”
—Eliot Corday

Bruce Kottke
Historical Hypotheses for Atherosclerosis Development

Ross & Glomset
- Endothelial Injury
 - Platelet Adherence
 - PDGF Release
 - Cell Proliferation
 - Advanced Lesion

Steinberg & Witzum
- High Plasma LDL
 - LDL Infiltration into Intima
 - Oxidized LDL +
 - Macrophages
 - Foam Cells
 - Fatty Streak

10^0 regulator of lipoprotein metabolism!

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2032127/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC295745/
https://link.springer.com/article/10.1007%2Fs00109-017-1575-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121590/
How Inflammation Attacks the Heart

1. **LDL Oxidized**
 Oxidized LDL cholesterol creates the "injury" by burrowing into the artery wall. Cigarette smoking, high blood pressure, and high blood sugar make the injury worse.

2. **Monocytes Migrate**
 In response to the injury, the immune system sends in a team of inflammatory cells, including white blood cells called monocytes.

3. **Monocytes → Macrophages**
 Monocytes migrate into the artery wall, where they turn into macrophages. The macrophages' job: gobble up the LDL cholesterol.

4. **Fatty Streak**
 The macrophages, now stuffed with LDL cholesterol, form a "fatty streak" in the artery wall.

5. **Fibrous Plaque**
 Over the decades, more cholesterol, connective and elastic tissue, calcium, and cell debris accumulate and turn the fatty streak into plaque. As the artery tries to heal itself, smooth muscle cells migrate in to cover the plaque, forming a fibrous cap around it.

6. **Cap Breakdown**
 Macrophages kill the smooth muscle cells and release enzymes that break down the fibrous cap.

7. **Cap Rupture**
 The cap ruptures.

8. **Clot Formation**
 When a clot forms around the rupture, blood flow is blocked, which triggers a heart attack. (If the blocked artery feeds the brain, the blockage triggers a stroke.)

Coronary artery (supplies blood and oxygen to the heart muscle).
Brain Basics

Plaques and tangles. Those are the classic hallmarks of Alzheimer’s disease.

The plaques are clumps of a protein fragment called beta-amyloid. The tangles are clusters of misshapen “tau” proteins that show up later in the disease.

But plaques and tangles alone don’t explain what happens to many aging brains. “Thirty percent of people over the age of 70 have elevated beta-amyloid and are cognitively normal,” says David Knopman, professor of neurology at the Mayo Clinic in Minnesota.

Scientists aren’t sure why. “The most prevalent idea is that amyloid deposits are only the initiating step often assume that it’s just Alzheimer’s,” notes Reed. “But it’s uncommon to find people with dementia who just have a single pathology. Very often, it’s mixed pathology.”

The most common other problem: damaged blood vessels in the brain.1,2

“The arteries become stiffened, narrowed, and sort of tortuous,” says Reed. “It’s much harder for the blood flow to occur normally.”

That can lead to a stroke that’s obvious, or to one that’s never noticed. “Around

“In fact, some of the symptoms we think of as normal brain aging may be due to injury to the brain’s blood vessels,” he notes. Researchers know the major threats. “The big risks for vascular brain injury are smoking, high blood pressure, and diabetes,” says Reed.

The causes of Alzheimer’s pathology are more murky. But new evidence suggests that insulin may play a role.

Here’s how to keep your brain in good working order.

1. Watch your blood pressure

“There’s a wealth of evidence that high blood pressure is a risk factor for late-life cognitive impairment,” says Knopman.
Middle Cerebral Artery Branches

...Cerebral vasculature! Oh my!

Artery of Stroke

The Window to the CV System?
Renal Vasculature

Figure 37-1 Devices for percutaneous transluminal coronary interventions. A, Coronary balloon. B, Rotational atherectomy burr (Rotablator). C, Coronary stent.
CABG = Coronary Artery Bypass Graft

Double?
Triple?
Quadruple?
Quintuple?

SI Fox 2013 fig 14.19
Procedures and heart attack deaths
Per 10,000 population

Angioplasties

Bypasses

Heart attack deaths

SOURCES: THOMAS THOM, NATIONAL HEART, LUNG, AND BLOOD INSTITUTE; GAUTAM GOWRISANKARAN, WASHINGTON UNIVERSITY IN ST. LOUIS; SALIM YUSUF, McMaster University, The INTERHEART Study

As noninvasive techniques improve, the rate for bypass surgery goes down.
Healing the Heart
Artificial heart = $125,000 - $250,000!

5400 await transplants, but only 2000 - 2600 donors are available…
Questions + Discussion
Additional Resource Slides: Development, ♥‘s Electrical Highway, Coordinated Events…
Fetal Circulation ≡ Aqua Animal
Bypass Lungs
R → L❤️ Shunt

G&H 2016 fig 84-4, G&H 2011 fig 83-4
(Automatically) Shock the Heart then it Contracts!
Intrinsic Regulation: Autorhythmic

- Sinus node
- A-V node
- A-V bundle
- Internodal pathways
- Left bundle branch
- Right bundle branch

G&H 2016, 2011, 2006 fig 10-1
(a) Normal pacemaker activity: Whole train will go 70 mph (heart rate set by SA node, the fastest autorhythmic tissue).

(b) Takeover of pacemaker activity by AV node when the SA node is nonfunctional: Train will go 50 mph (the next fastest autorhythmic tissue, the AV node, will set the heart rate).

(c) Takeover of ventricular rate by the slower ventricular autorhythmic tissue in complete heart block: First part of train will go 70 mph; last part will go 30 mph (atria will be driven by SA node; ventricles will assume own, much slower rhythm).
Extrinsic Regulation: Nervous

NB: + Extrinsic Hormonal e.g. Adrenal Epi + NE
Electrical Events Precede Mechanical Events!