Review:

Application of Bloch's theorem:

\[\psi_k(r) = e^{i\mathbf{k} \cdot \mathbf{r}} \psi(r) \]

\[\psi_k(x) = e^{i\hbar k_x} \left(A \sin(k_0 x) + B \cos(k_0 x) \right) \]

\[x \in [-\pi, \pi] \]

\[V(x) = \sum_j S(x-ja) \]

\[\psi_k(x) = e^{i\hbar k(x-a)} \left(A \sin(k_0 (x+q)) + B \cos(k_0 (x+q)) \right) \]

\[x \in [-\pi, \pi] \]

c) \[\cos(k_0 a) = \cos(k_0 q) + \frac{\sin(k_0 q)}{k_0 a} \]

Diagram:

- Bands with states
- Band gap
- Energy levels
Energy Bands in 1D

Electric Current
in Metals: Odd # e^-'s permitted

Conduction Band

Valence Band

Band Insulator

Even # e^-'s go out cell

Thermally activated charge carrier

=) Some charge carriers!!

Band overlap

=) Charge carriers

The case of band overlap can be quite common in real materials because they live in 3D.
Energy Bands in 2D and 3D

Monovalent atom

\[c^- \]

Con sit half of the 1st BZ

\[\beta \text{ shown} \]

\[2 \pi a \]

What is the radius of the disk?

Radius of disk:

\[\pi R^2 = \frac{1}{2} \left(\frac{2\pi a}{a} \right)^2 \]

\[\frac{2\pi R^2}{a^2} \]

\[R = \frac{\sqrt{2\pi}}{a} \times \frac{2.5}{a} < \frac{\pi}{a} \]

Fermi sea forms a disk: area = \[\frac{1}{2} \left(\frac{2\pi}{a} \right)^2 \approx \frac{1}{2} \text{ PBZ} \]

Adding a periodic potential:

1. States close to zone boundary get moved down in energy (from opening of band gap.)
2. Electrons preferentially fill states near BZ edge.

Fermi surface

Fermi sea still fill \(\frac{1}{2} \) PBZ.

1. Increasing strength of \(V(\mathbf{r}) \rightarrow 10\text{eV} \) get larger BZ bands gap grows so electronic energy state @ boundary get smaller.

\[E = E_o - 3t \cos(h_xa) - 2t \cos(h_ya) \]
An illustration of band topology at the B2 edge:

There states get filled

Draw red first!!
The shape of the Fermi sea is obtained via tight-binding:

\[
\phi(\vec{r} - \vec{r}_j) \quad \text{is a bound s-orbital (spherically symmetric)}
\]

\[
s^\text{form}
\]

\[
\psi_h(\vec{r}) = \frac{1}{\sqrt{N}} \sum_j \exp(i\vec{R}_j \cdot \vec{r}) \phi(\vec{r} - \vec{R}_j) = |\vec{R}_j\rangle
\]

labeled with \(\vec{R}_j \) since it is a Bloch function:

\[
\psi^R(\vec{r}) = \frac{1}{\sqrt{N}} \sum_j \exp(i\vec{R}_j \cdot \vec{r}) \phi(\vec{r} + \vec{R} - \vec{R}_j)
\]

\[
= e^{i\vec{R} \cdot \vec{R}} \frac{1}{\sqrt{N}} \sum_j \exp(i\vec{R}_j \cdot (\vec{R} - \vec{R}_j)) \phi(\vec{r} - (\vec{R}_j - \vec{R})) = e^{i\vec{R} \cdot \vec{R}} \psi_h(\vec{r}) \quad \vec{R} = \text{Lattice Vector}
\]

Thus we can calculate the energy directly:

\[
E^R = \langle \psi^R | H | \psi^R \rangle = \frac{1}{N} \sum_j \sum_m \int e^{i\vec{R}_j \cdot \vec{R}_m} \phi^*(\vec{r} - \vec{R}_m) H \phi(\vec{r} + \vec{R}_j) d\vec{r}
\]

\[
= \frac{1}{N} \sum_j \sum_m \int e^{i\vec{R}_j \cdot (\vec{R}_m - \vec{R}_j)} \phi^*(\vec{r} - \vec{R}_m) H \phi(\vec{r} - (\vec{R}_j - \vec{R}_j)) d\vec{r}
\]

\[
= \frac{1}{N} \sum_j \sum_m e^{i\vec{R}_j \cdot \vec{R}_m} \int \phi^*(\vec{r} - \vec{R}_m) H \phi(\vec{r} - \vec{R}_j) d\vec{r}
\]
There are N copies of the Pauli σ_z sum, so,

$$\langle \Phi | H | \Phi \rangle = \sum_m \sum e^{-i \frac{\pi}{3} \cdot \frac{3_m}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3}} \int \phi^* (\vec{r} - \frac{\vec{3}_m}{3}) H \phi (\vec{r}) d^3 r$$

We only keep $\frac{3_m}{3} = \sum \pm \frac{3}{3}$ nearest neighbors.

$$\phi(x+\frac{3}{3}) \phi(x) \phi(x-\frac{3}{3})$$

So,

$$E_R = \langle \Phi | H | \Phi \rangle = \int \phi^* (\vec{r}) H \phi (\vec{r}) d^3 r + \sum_m \sum e^{-i \frac{\pi}{3} \cdot \frac{3_m}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3}} \int \phi^* (\vec{r} - \frac{\vec{3}_m}{3}) H \phi (\vec{r}) d^3 r$$

Main tight-binding result.

$$E_R = -\alpha - \chi \sum e^{-i \frac{\pi}{3} \cdot \frac{3_m}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3}} \frac{1}{R \in l'' \bar{B}Z}$$

The factor χ is what opens up the band bands!! For hydrogen 1100 states as $\phi (\vec{r})$:

$$\gamma \propto \epsilon$$

$$\frac{1}{\gamma} \propto 10$$

$$\gamma \approx 0, \quad \text{as} \quad \gamma \approx 0.5 \delta$$

Band gets wider with longer γ.
Back to the 2D square example:

\[
\frac{1}{2} \mathbf{q}_m = (\pm q, 0), (0, \pm q)
\]

\[
E(k) = -\alpha - k \left(e^{i k_x a} + e^{-i k_x a} + e^{i k_y a} + e^{-i k_y a} \right)
\]

Show plot:

\[
= -\alpha - 2k \left[\cos(k_x a) + \cos(k_y a) \right]
\]

These electrons move to fill lower energy states.

Show plot of SC Fermi surface:
Review:

\[\psi_n(k) = \frac{1}{\sqrt{N}} \sum_j \exp(i\mathbf{R}_n \cdot \mathbf{R}_j) \phi(k \mathbf{R}_j - \mathbf{R}_j) \]

Tight-binding Bloch Function

\[E(k) = -\alpha - \delta \sum_m e^{i\mathbf{k} \cdot \mathbf{S}_m} \]

Example: 2D square lattice of nonoverlapped atoms

\[E(k) = -\alpha - 2\delta \left[\cos(k_x a) + \cos(k_y a) \right] \]

\[\Rightarrow \]

Fermi surface

In 3D,

Fermi surface
2D Square Lattice w/ Divalent Atoms:

- Free
- Extended

\[\pi K_F^2 = \left(\frac{17\pi}{a} \right)^2 \]

\[K_F = \frac{2}{a} \sqrt{\pi} \]

\[\approx 3.55 \frac{\pi}{a} \]

Reduced

1° BZ

2° BZ

N.B. Top of section b will take up such as center of 1° BZ for neighbor cell.

Nearly Free:

Applying a potential will lower energy here & raise it here, so for a weak potential we have:
- Lower band
- Upper band

Weak

Metal →

Strong

Insulator

A Show II of divalent calcium free electron Fermi surface.
Take-home: A weak potential can allow for band overlap even when the e^- is even.

Other places where Band Theory (as we've presented it) fails in predicting metal-insulator states:

- **Magnetic**: spin-spin interaction strong \Rightarrow filling N_f doesn't work.
- **Mott Insulator**: (NiO, Co)
 - strong $e^- - e^-$ interaction, so even with non-valent atoms, only 1 e^- sits at each atom (no N_f) & the system is insulating!!

Optical Properties & Band structure:

- **Insulator & Semiconductor**

Bond insulators cannot absorb photons of energy less than their band gap:

$\hbar \nu = E_g \quad \nu = \frac{E_g}{\hbar}$

[Graph showing the relationship between $E(k)$ and k.]

- Show PBS of light absorption spectra. There is a strong drop in the absorption for wavelengths greater than bandgap wavelength.
 - If $E_g > 3.2 \text{ eV}$, the crystal will be optically transparent.
A Show Part of Semiconductors

- ColS have $E_g > 2.6$ eV so blue & violet opt absorbed & red & green

- Small band gap semiconductor such as Si, Ge, GaAs have $E_g < 1.5$ eV, so the absorb most visible light block.

- Quartz, diamond, aluminum oxide, BN have $E_g > 3.2$ eV so they are transparent.

The onset for absorption of photons can be sharp or gradual. This has to do with the indirect or direct bandgap nature.

- **Conduction**
- Direct
- **Indirect**

May involve lower energy transition.
Direct: $A \vec{k} \neq 0$

Indirect: $A \vec{k} \neq 0$

Indirect processes involve a non-zero \vec{k}, but the \vec{k} of a photon is small:

$$\frac{\hbar}{\vec{k} \cdot \vec{c}} = \frac{E}{\vec{p} \cdot \vec{c}}$$

$$\Rightarrow 1 \frac{\hbar}{\vec{k}} \frac{E}{\hbar} \cdot \frac{1}{c} = \frac{1.6 \text{ eV}}{\frac{4 \times 10^{-19} \text{ eV} \cdot \text{s}}{3 \times 10^8}} \frac{1}{3 \times 10^5} = 10^6 \text{ cm}^{-1}$$

Compared to phonons:

$$|\vec{k}| = \frac{E}{\hbar} \cdot \frac{1}{V_s}$$

$C \gg V_s$ \[\Rightarrow \frac{1}{a} = 10^{10} \text{ m}^{-1} \]

$$\Rightarrow |\vec{k}|_{\text{phonon}} < |\vec{k}|_{\text{photon}}$$

Because energy & momentum must be conserved, indirect transitions often involve complicated phonon absorption/emission processes that are not efficient:

Indirect absorption can still occur & does occur, just much less efficiently.
Optical Properties of Metals

What gives metals their color?

Intraband transitions dominate.

Metals absorb & reemit light very efficiently, which is why they are shiny. The re-emission process occurs very quickly.

Metals that do not form oxides look shinier, such as Ag, Au, Pt.

Color of metal:

Intraband Transitions

ΔE_{Ag} > ΔE_{Cu}, so Ag can absorb & reemit higher energy photons, as well as have very photonic, so Ag looks more mirror-like. Cu only absorbs re-emits Red-Green & looks copper.
Impurities:

Small levels of impurity can transform optical & electronic properties.

Show that B in Diamond.

Semiconductor Physics:

Consider a filled valence band & excite a single electron from the valence to the conduction band.

An absence of an electron from the valence band is called a "hole".

We keep track of holes & treat them as individual elementary particles.

The charge of an electron: $-e$

The charge of a hole is: $+e$

Energy of a hole?

To move electron down, take negative energy (phonon)

To move a hole from k_x to k'_x, take positive energy (work),

Like pushing balloon under water!!