Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media

Michaela S. Burke, ‡ Shihui Zou, ‡ Lisa J. Enman, ‡ Jaclyn E. Kellon, ‡ Christian A. Gabor, ‡ Erica Pledger, ‡ and Shannon W. Boettcher∥

‡Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403, United States
∥Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China

Supporting Information

ABSTRACT: First-row transition-metal oxides and (oxy)hydroxides catalyze the oxygen evolution reaction (OER) in alkaline media. Understanding the intrinsic catalytic activity provides insight into improved catalyst design. Experimental and computationally predicted activity trends, however, have varied substantially. Here we describe a new OER activity trend for nominally oxyhydroxide thin films of Ni(Fe)OxHx > Co(Fe)OxHx > FeOxHx-AuOx > FeOxHx > CoOxHx > NiOxHx > MnOxHx. This intrinsic trend has been previously obscured by electrolyte impurities, potential-dependent electrical conductivity, and difficulty in correcting for surface-area or mass-loading differences. A quartz-crystal microbalance was used to monitor mass in situ and X-ray photoelectron spectroscopy to measure composition and impurity levels. These new results provide a basis for comparison to theory and help guide the design of improved catalyst systems.

The slow kinetics of the oxygen evolution reaction (OER), in base, 4OH− → O2 + 2H2O + 4e−, and in acid, 2H2O → O2 + 4H+ + 4e−, limit the performance of large-scale energy technologies based on the photodriven or electricity-driven production of H2 from water.1–5 Development of improved catalysts can be accelerated by an enhanced understanding of the underlying electrocatalytic mechanism and its dependence on catalyst composition and structure. The paradigm for understanding heterogeneous OER catalysis that has emerged over a half-century of research is based on the application of the Sabatier principle.6 The OER is thought to occur on a surface layer with low loading, in principle, minimizes these contributions.7,8 Understanding OER catalysts based on earth-abundant first-row transition metals is of particular interest, as these catalysts might be used in water electrolysis or photoelectrolysis systems at a scale commensurate with global energy use. Consequently, there have been many experimental and computational efforts to correlate OER activity to chemical or material parameters. Mn9–14 Fe,15 Co,16–18 and Ni-based19 metal oxides and (oxy)hydroxides have been broadly studied and benchmarked for OER catalysis.1,2,5,20 Early work by Delahay correlated the OER overpotential at 1 A cm−2 measured by Hickling21 and the M=OH bond strength (with the metals in their highest oxidation states under the OER conditions).22 The activity trend was Co ≈ Fe > Ni. Trasatti correlated the enthalpy of the reaction MOx + 1/2O2 → MOx+1 (which should reasonably correlate with the strength of the M−O bond) to the OER activity to generate a volcano relation with the precious metal oxides IrO2 and RuO2 at the top and the first-row transition metal oxides in the order MnO2 > NiO > Co=O2 ≫ Fe=O4.23,24 Lyons studied electrochemically conditioned metal electrodes and found an activity trend of Ni > Co > Fe.25 A number of other studies have focused on perovskite oxides,26,27 and correlated activity to the occupancy of the transition-metal eg orbital,28 which can also be related to the M−O bond strength.29 Other experimental benchmarking studies have found activities of NiOxHx ≈ CoOxHx for electrodeposited (oxy)hydroxides.30,31 Substantial variation among the reported activity trends is thus evident.

One limitation of many analyses is that differences in microscopic surface area and electrical conductivity of the catalyst layer are not well accounted for.32–34 The use of thin-film electrodes with low loading, in principle, minimizes these confounding effects.3 Subbaraman deposited near-monolayer (oxy)hydroxide films on single-crystal Pt and found activities of NiOxHx > CoOxHx > FeOxHx > MnOxHx35 which was correlated with the “oxophilicity” of the metal (i.e., M−O bond strength). Ni (oxy)hydroxide was thus assumed to have the most-optimal M−O bond strength among the first-row transition metals. We studied metal oxides in thin-film form and found the same activity trend and also that NiO was chemically unstable and transformed into (nominally) NiOOH.
The Journal of Physical Chemistry Letters

Letter

which absorbed Fe impurities from the electrolyte during OER. Studies in rigorously Fe-free electrolyte show Fe dramatically enhances activity and that pure NiOOH is a very poor OER catalyst, consistent with the original studies by Corrigan. Similar, but less dramatic, effects were found for Fe in CoOOH. In an experimental/computational study, Friebl concluded that Fe is the active site for OER in the Ni(Fe)OOH system.

Computational analyses using density functional theory (DFT) have also yielded varied results. Most work has focused on comparing different crystal faces and structures for single and mixed-cation oxides/(oxy)hydroxides of Co, Mn, and Ni in different surface phases responsible for OER cannot. Most OER catalysts have been presumed to be oxides, but oxides are generally not thermodynamically stable in water relative to hydroxides and oxyhydroxides, which is consistent with recent observations of structural changes in oxide OER catalysts. The local chemical structure (protonation state, coordination geometry, oxidation state) of these hydrated, electrolyte-permeable phases further depends on the electrochemical potential and the electrolyte. Electrochemical polarization likely changes the catalyst structure and hence the M–O bond energy. Identifying and understanding activity trends is further complicated by the role of Fe impurities in OER, which appear to be widely present in even the highest-purity alkaline electrolytes that have not been specially purified and the fact that the electrical conductivity widely varies among oxides and (oxy)hydroxides. These issues raise significant concern regarding previous activity trends and their mechanistic interpretation.

Here we report a new activity trend for OER catalysts based on first-row transition metals that is different from previous experimental and computational trends. The catalysts are synthesized as thin films (with loading of ~10 μg cm$^{-2}$) via electrodeposition at room temperature to directly access the hydrated oxide or (oxy)hydroxide phases that would otherwise form in situ at the surface of oxide-based catalysts synthesized at high temperature. Measurements are made on Au and Pt quartz-crystal-microbalance (QCM) electrodes, where the mass of the film is precisely quantified. Interdigitated electrodes are used to measure the electrical conductivity in situ of each catalyst and determine whether the measured activities are affected by poor electronic transport. All activity trends are reported as effective turnover frequencies (TOF, i.e., O$_2$ generated per second per metal cation) based on the total mass of the catalyst film calculated from the QCM measurement, assuming a formula weight of MOOH and that every metal cation is a possible active site (which is unlikely in the mixed metal cases). Nonetheless, we argue this is the most-consistent way to compare activity across a range of compositions; especially in the case of the porous, electrolyte-permeated (oxy)hydroxide-phase thin-film catalysts, where most metal cations are electrochemically accessible (see discussion below).

The dependence of TOF on overpotential, η, is shown in Figure 1A. The resulting activity trends for catalysts across the first row of the transition metals are given in Figure 1B ($\eta = 350$ mV) and Figure 1C ($\eta = 450$ mV). The catalysts are synthesized by electrodeposition as (oxy)hydroxides on Au (closed symbols) and Pt (open symbols) microbalance electrodes and measured in triplicate for those on Au. Some error bars are smaller than the symbols. Compositions listed in (B) and (C) are ordered based on the atomic number of the host/primary cation. The fit lines and shading in (A) were added to make trends clear. The dotted lines in (B) and (C) are to guide the eye. Film masses were 8–12 μg cm$^{-2}$ for all films except the thin FeO$_x$H$_y$, which was 0.5 to 1.0 μg cm$^{-2}$. Exact masses can be found in Table S1. Because FeO$_x$H$_y$ films slowly dissolve in 1 M KOH, measurements of FeO$_x$H$_y$ were performed on different films at short time intervals where the film mass was constant.

The lack of consistency among the various experimental and computational activity trends illustrates the fundamental challenge in understanding heterogeneous OER catalysis and appropriately applying the Sabatier principle. While “bulk” crystalline structures can easily be characterized, the active surface phases responsible for OER cannot. Most OER catalysts have been presumed to be oxides, but oxides are generally not thermodynamically stable in water relative to hydroxides and oxyhydroxides, which is consistent with recent observations of structural changes in oxide OER catalysts. The local chemical structure (protonation state, coordination geometry, oxidation state) of these hydrated, electrolyte-permeable phases further depends on the electrochemical potential and the electrolyte. Electrochemical polarization likely changes the catalyst structure and hence the M–O bond energy. Identifying and understanding activity trends is further complicated by the role of Fe impurities in OER, which appear to be widely present in even the highest-purity alkaline electrolytes that have not been specially purified and the fact that the electrical conductivity widely varies among oxides and (oxy)hydroxides. These issues raise significant concern regarding previous activity trends and their mechanistic interpretation.

Here we report a new activity trend for OER catalysts based on first-row transition metals that is different from previous experimental and computational trends. The catalysts are synthesized as thin films (with loading of ~10 μg cm$^{-2}$) via electrodeposition at room temperature to directly access the hydrated oxide or (oxy)hydroxide phases that would otherwise form in situ at the surface of oxide-based catalysts synthesized at high temperature. Measurements are made on Au and Pt quartz-crystal-microbalance (QCM) electrodes, where the mass of the film is precisely quantified. Interdigitated electrodes are used to measure the electrical conductivity in situ of each catalyst and determine whether the measured activities are affected by poor electronic transport. All activity trends are reported as effective turnover frequencies (TOF, i.e., O$_2$ generated per second per metal cation) based on the total mass of the catalyst film calculated from the QCM measurement, assuming a formula weight of MOOH and that every metal cation is a possible active site (which is unlikely in the mixed metal cases). Nonetheless, we argue this is the most-consistent way to compare activity across a range of compositions; especially in the case of the porous, electrolyte-permeated (oxy)hydroxide-phase thin-film catalysts, where most metal cations are electrochemically accessible (see discussion below).

The dependence of TOF on overpotential, η, is shown in Figure 1A. The resulting activity trends for catalysts across the first row of the transition metals are given in Figure 1B ($\eta = 350$ mV) and Figure 1C ($\eta = 450$ mV). The catalysts are synthesized by electrodeposition as (oxy)hydroxides on Au (closed symbols) and Pt (open symbols) microbalance electrodes and measured in triplicate for those on Au. Some error bars are smaller than the symbols. Compositions listed in (B) and (C) are ordered based on the atomic number of the host/primary cation. The fit lines and shading in (A) were added to make trends clear. The dotted lines in (B) and (C) are to guide the eye. Film masses were 8–12 μg cm$^{-2}$ for all films except the thin FeO$_x$H$_y$ which was 0.5 to 1.0 μg cm$^{-2}$. Exact masses can be found in Table S1. Because FeO$_x$H$_y$ films slowly dissolve in 1 M KOH, measurements of FeO$_x$H$_y$ were performed on different films at short time intervals where the film mass was constant.
Catalysts on Au. Others on Co, Ni, and Mn (oxy)hydroxide ultrathin film, activity enhancement on Au is consistent with the results of “strongly interacting with the metal support are those electronically wired and capable of driving OER. The strong activity enhancement on Au is also consistent with the results of others on Co, Ni, and Mn (oxy)hydroxide ultrathin film OER catalysts on Au. At $\eta = 450$ mV, FeO$_x$H$_y$ is electronically wired and capable of driving OER. The strong activity enhancement on Au is consistent with the results of others on Co, Ni, and Mn (oxy)hydroxide ultrathin film OER catalysts on Au. The apparent activity of FeO$_x$H$_y$ at $\eta = 350$ mV. The Fe sites strongly interacting with the metal support are those “electronically wired” and capable of driving OER. The strong activity enhancement on Au is consistent with the results of others on Co, Ni, and Mn (oxy)hydroxide ultrathin film OER catalysts on Au. At $\eta = 450$ mV, FeO$_x$H$_y$ becomes electronically wired and capable of driving OER.

The compositions listed in the Figures were measured by XPS on Au substrates unless otherwise noted. Compositions measured on Pt for the mixed-metal catalysts are similar and are listed in Table S1.

These TOF data show that Ni(Fe)O$_x$H$_y$ has the highest OER activity at all the overpotentials studied, while Co(Fe)O$_x$H$_y$ has the second highest. Among the single-element (oxy)hydroxides the trend depends on the applied overpotential. At a high overpotential of 450 mV, the observed activity trend is FeO$_x$H$_y$ > CoO$_x$H$_y$ > NiO$_x$H$_y$ > MnO$_x$H$_y$, independent of substrate (e.g., Au or Pt). At a lower overpotential of 350 mV, however, the activity of the FeO$_x$H$_y$ depends strongly on the substrate and film thickness, which we attribute to the electronically insulating nature of FeO$_x$H$_y$ at overpotentials below ~ 400 mV. At 350 mV the majority of the FeO$_x$H$_y$ film is electronically isolated and thus inactive. Thin FeO$_x$H$_y$ films show much higher per-metal activity than thick films because a larger fraction of the Fe sites are electronically in contact with the underlying conductive Au or Pt. This is consistent with our observation that the substrate (Au or Pt) also affects the apparent activity of FeO$_x$H$_y$ at $\eta = 350$ mV. The Fe sites strongly interacting with the metal support are those “electronically wired” and capable of driving OER. The strong activity enhancement on Au is consistent with the results of others on Co, Ni, and Mn (oxy)hydroxide ultrathin film OER catalysts on Au. At $\eta = 450$ mV, FeO$_x$H$_y$ becomes electronically wired and a larger fraction of film (i.e., Fe sites further from the conducting Au or Pt) is likely to contribute to the observed activity. These data are thus consistent with the hypothesis that the poor electrical conductivity of the pure FeO$_x$H$_y$ has prevented accurate measurement of the intrinsic OER activity of Fe sites in typically studied thick films or powder samples. At $\eta = 450$ mV, the thin film of FeO$_x$H$_y$ on Au retains a slightly higher TOF than its thick counterpart, but FeO$_x$H$_y$ on Pt has a statistically identical TOF for both the thick and thin films, suggesting that FeO$_x$H$_y$ on Pt shows its intrinsic TOF without substantial substrate enhancement.

Like FeO$_x$H$_y$, MnO$_x$H$_y$ also shows OER activity that is only significant at overpotentials > 400 mV, potentials near where the electrical conductivity becomes measurable (Figure 2B). When Fe is present within the electrically conductive NiO$_x$H$_y$ or CoO$_x$H$_y$ scaffolds, very high activity is observed, which has been tentatively attributed to “electronically wired” Fe active sites. Besides the electronic connectivity, on a per-Fe-site basis, it appears that the “scaffolded” Fe is enhanced beyond that of FeO$_x$H$_y$ on Pt or Au, even at higher overpotentials. This suggests a synergistic interaction between Fe and the Ni or Co cations. For catalysts that contain putative Fe active sites, the trend is thus Ni(Fe)O$_x$H$_y$ > Co(Fe)O$_x$H$_y$ > FeO$_x$H$_y$-AuO$_x$ > FeO$_x$H$_y$-PtO$_x$. (Note that we indicate in this series that the surface of the Au or Pt electrode is probably oxidized under these conditions.) When Mn is coelectrodeposited with Ni to form Ni(Mn)O$_x$H$_y$, the resulting catalyst has similar activity to
Cyclic voltammetry shows that the addition of Fe into Ni- and Co-(oxy)hydroxide anodically shifts both the Co$_{2+}$/3^{+} and Ni$_{2+}/3^{+}$ redox waves (Figure 2A), indicating strong electronic interaction between the cations. It is interesting that the addition of Mn into Ni$_{2+}$H$_{4}$ does not induce a similar peak shift, although we do note a difference in the cathodic peak integrated intensity and shape that is not understood at this point but is presumably also due to interactions between the cations. It is also possible to use the integrated redox peak areas for the Ni and Co (oxy)hydroxides to estimate the electrochemically accessible cations in the NiO based catalysts (with or without Fe) were stable upon electrochemical characterization.

Note:

The apparent number of active Co and Ni sites appear to vary significantly in the voltammetry data shown. This is in part because the number of redox-active sites measured at steady-state during voltammetry is lower than that measured on the first cycle (as shown in Figure 2A for Co$_{2+}$H$_{4}$) due to the conductivity switching behavior of the films and the trapping of a portion of the film in the oxidized state (discussed in more detail in ref 39). After taking this effect into account, we estimate that the number of electrochemically accessible cations in the NiO-based films is only about twice that of the Co$_{2+}$H$_{4}$ films. While we could, in principle, correct the mass-based TOF for this effect, we argue that such differences are small relative to the error inherent in estimating TOF and that the QCM mass-based TOF (per metal cation) remains the most-useful simple metric for comparison over a range of (oxy)hydroxide compositions.

We also note that Fe and Fe-mixed oxyhydroxides have the lowest Tafel slopes (Figure 2C). This suggests that the addition of Fe into the Co$_{2+}$H$_{4}$ or Ni$_{2+}$H$_{4}$ host is a major factor in determining the rate-limiting step of the reaction. Because the measurements were made on QCM electrodes, we also monitored the mass of the catalyst during all measurements. Figure 3 shows that all of the Ni- and Co-based catalysts (with or without Fe) were stable upon polarization, while FeO$_{2+}$H$_{4}$ dissolved substantially during the entire analysis and MnO$_{2+}$H$_{4}$ slightly at high current densities (5 ± 3% of mass). It is interesting to note that FeO$_{2+}$H$_{4}$ is the most active of the first-row transition-metal (oxy)hydroxides and also the most soluble, consistent with the activity-stability correlation found for noble OER catalysts in acid, although the high stability and activity of the bimetallic Ni(Fe)O$_{2+}$H$_{4}$ indicates that the correlation is not universal. Despite the high rate of dissolution for the FeO$_{2+}$H$_{4}$, the corrosion current associated with the mass loss (assuming a possible 3e$^{-}$ oxidation of FeO$_{2+}$H to soluble FeO$_{2+}$ would be <10% of the OER current at $\eta = 300$ mV and <0.3% of the OER current at $\eta = 350$ mV.

While it is tempting to plot the activity trends versus a chemical descriptor, this is particularly challenging with the materials under study. We find that good OER catalysts are also electrical conductors in their active state, suggesting the electronic structure is delocalized and likely band-like. The cations are thus unlikely to have integer oxidation states during OER, which makes, for example, counting the e$^{-}$ electrons difficult. Furthermore, the effective oxidation state is likely a function of overpotential. In the Figures above we have simply plotted the cations in order of increasing atomic number.

In conclusion, these new measurements provide a clear activity trend for the first-row transition metals that can be interpreted in the absence of confounding surface area, conductivity, and Fe-impurity effects. The data explain why FeO$_{2+}$H$_{4}$ catalysts are typically not considered to be good at the OER (low electrical conductivity) and why Ni-based catalysts are often found at the top of experimental volcano curves (Fe impurities). In basic media, MnO$_{2+}$H$_{4}$ is neither a good OER catalyst nor a good electrical conductor. These data should thus help in benchmarking improved computational methods that can accurately compare the activities of the hydrated (oxy)-hydroxide OER-active catalysts as well as guide experimental catalyst design efforts.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.5b01650.

Experimental methods, tabulated data from figures, additional data, and discussion of Fe contamination in MnO$_{2+}$H$_{4}$, and substrate enhancement effects. Cyclic voltammograms of the films before and after activity analysis. Tafel analyses, in situ mass measurements, XP spectra, and SEM images for each material. (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: swb@uoregon.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation through CHE-1301461. S.Z. acknowledges the China Scholar Council for financial support. We thank Dr. Adam M. Smith, the Journal of Physical Chemistry Letters
Matt G. Kast, Dr. Lena Trotchaud, and Adam Batchelor for insightful discussion. We acknowledge Dr. Stephen Golledge for help with XPS data interpretation. The project made use of CAMCOR facilities supported by grants from the W. M. Keck Foundation, the M. J. Murdock Charitable Trust, ONAMI, the Air Force Research Laboratory (FA8650-05-1-5041), the National Science Foundation (0923577 and 0421086), and the University of Oregon. S.W.B. thanks the Research Corporation for Science Advancement, the Sloan Foundation, and the Camille and Henry Dreyfus Foundation for additional support.

REFERENCES

