Constants

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron charge (e)</td>
<td>1.60×10^{-19} C</td>
</tr>
<tr>
<td>Electron rest mass (m_e)</td>
<td>9.11×10^{-31} kg (0.511 MeV/c²)</td>
</tr>
<tr>
<td>Proton rest mass (m_p)</td>
<td>1.673×10^{-27} kg (938 MeV/c²)</td>
</tr>
<tr>
<td>Neutron rest mass (m_n)</td>
<td>1.675×10^{-27} kg (940 MeV/c²)</td>
</tr>
<tr>
<td>W^+ rest mass (m_{W^+})</td>
<td>80.4 GeV/c²</td>
</tr>
<tr>
<td>Planck’s constant (h)</td>
<td>6.63×10^{-34} J·s</td>
</tr>
<tr>
<td>Speed of light in vacuum (c)</td>
<td>3.00×10^8 m/s</td>
</tr>
<tr>
<td>Boltzmann’s constant (k_B)</td>
<td>1.38×10^{-23} J/K</td>
</tr>
<tr>
<td>Gravitational constant (G)</td>
<td>6.67×10^{-11} N·m²/kg²</td>
</tr>
<tr>
<td>Permeability of free space (μ_0)</td>
<td>$4\pi \times 10^{-7}$ H/m</td>
</tr>
<tr>
<td>Permittivity of free space (ϵ_0)</td>
<td>8.85×10^{-12} F/m</td>
</tr>
<tr>
<td>Mass of Earth (M_{Earth})</td>
<td>5.98×10^{24} kg</td>
</tr>
<tr>
<td>Mass of Moon (M_{Moon})</td>
<td>7.35×10^{22} kg</td>
</tr>
<tr>
<td>Radius of Earth (R_{Earth})</td>
<td>6.38×10^{6} m</td>
</tr>
<tr>
<td>Radius of Moon (R_{Moon})</td>
<td>1.74×10^{6} m</td>
</tr>
<tr>
<td>Radius of Sun (R_{Sun})</td>
<td>6.96×10^{8} m</td>
</tr>
<tr>
<td>Earth - Sun distance (R_{ES})</td>
<td>1.50×10^{11} m</td>
</tr>
<tr>
<td>Density of iron at low temperature (ρ_{Fe})</td>
<td>7.88×10^3 kg/m³</td>
</tr>
<tr>
<td>Classical electron radius (r_0)</td>
<td>2.82×10^{-15} m</td>
</tr>
<tr>
<td>Gravitational acceleration on Earth (g)</td>
<td>9.8 m/s²</td>
</tr>
<tr>
<td>Atomic mass unit</td>
<td>1.66×10^{-27} kg</td>
</tr>
<tr>
<td>Specific heat of oxygen (c_V)</td>
<td>21.1 J/mole·K</td>
</tr>
<tr>
<td>Specific heat of oxygen (c_P)</td>
<td>29.4 J/mole·K</td>
</tr>
</tbody>
</table>

Moments of Inertia

For a disk of mass M and radius R, about its symmetry axis: $(1/2) MR^2$.

For a solid sphere of mass M and radius R, about any symmetry axis: $(2/5) MR^2$.

For a spherical shell of mass M and radius R, about any symmetry axis: $(2/3) MR^2$.
Spherical harmonics

The spherical harmonics Y_{lm} have the normalization property

$$\int_{-1}^{1} d\cos \theta \int_{0}^{2\pi} d\phi \ Y_{lm}^*(\theta, \phi) Y_{l'm'}(\theta, \phi) = \delta_{ll'} \delta_{mm'}.$$

The first few are

$$Y_{00} = \frac{1}{\sqrt{4\pi}}$$
$$Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi}$$
$$Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta$$
$$Y_{22} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{2i\phi}$$
$$Y_{21} = -\sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{i\phi}$$
$$Y_{20} = \sqrt{\frac{5}{16\pi}} [3 \cos^2 \theta - 1]$$

with $Y_{l,-m}(\theta, \phi) = -Y_{lm}^*(\theta, \phi)$.

Laplacian operator

Cartesian coordinates:

$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$

Cylindrical coordinates:

$$\nabla^2 t = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial t}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$

Spherical coordinates:

$$\nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial t}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial t}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$
Problem 1

Consider a system of two identical masses m connected by ideal, massless springs as shown. The middle spring constant is k, while the outer springs are identical with constant K, where $K \neq k$. The outer springs are attached to rigid walls. We consider only the horizontal, one-dimensional motion of the system.

\[
\begin{array}{c}
\text{m} \\
k \\
\text{m} \\
K \\
K \\
k \\
\text{m} \\
K \\
K \\
\text{m}
\end{array}
\]

a) Write down the equations of motion for each mass.

b) Determine the normal modes of motion and the frequency of each mode.
Problem 2

A mass is suspended in a gravitational field by a string wrapped around a cylinder of radius R as shown. The string is attached at the top of the cylinder, and the mass is free to swing like a pendulum. Assume that the mass only swings in the vertical plane normal to the cylinder axis, the mass always remains below the cylinder, and the string always remains taut.

a) Write down the Lagrangian for this system taking the angle θ between the line from the center of the cylinder to the last point of string-cylinder contact and the horizontal as your independent dynamical variable. The length of the string not in contact with the cylinder when $\theta = 0$ is l.

b) Derive the equation of motion for θ.

c) Simplify this equation in the limit $R \ll l$. Do you recognize this result?
Problem 3

A uniform hoop of mass m and radius r rolls without slipping on a fixed cylinder of radius R as shown. The only external force is that of gravity. If the smaller hoop starts rolling from rest on top of the bigger cylinder, find the point at which the hoop falls off the cylinder.
Problem 4

A layer of material with a magnetic permeability of $\mu_L = 2$ is embedded in a medium of magnetic permeability of $\mu_M = 4 \times 10^3$. The layer has thickness w and in the other two dimensions its length approaches infinity. Both materials are uniform, isotropic, and non-conducting. We label the three regions as A, B, and C (see figure below). In region A, there is a magnetic field \vec{H} with magnitude H_A at an angle $\alpha_A = \pi/6$ with respect to the normal to the interface.

\[\text{A} \quad \text{B} \quad \text{C} \]
\[\mu_M \quad \mu_L \quad \mu_M \]

\[w \]

\[\vec{H} \]

a) State the boundary conditions at the interface for the parallel and perpendicular components of the magnetic field.

b) In regions B and C, evaluate the magnitude of \vec{H} in terms of H_A and the angle of the field with respect to the normal to the interface.
Problem 5

A grounded, conducting sphere of radius a is placed with its center at the origin. A charge Q is placed on the z-axis at $z = b$, where $b > a$. Find the force on the charge Q.
Problem 6

An electromagnetic plane wave with field amplitude E_0 and angular frequency ω is incident on a glass slab with thickness d and index of refraction n. As shown in the ray diagram, the wave goes through multiple reflections inside the slab. The initial angle of incidence is θ. The amplitude transmission coefficients (i.e. ratio of the transmitted and incident electric field amplitudes) from air to glass and from glass to air are t and t' respectively. The amplitude reflection coefficient (i.e. ratio of the reflected and incident electric field amplitudes) in the glass is r. Assume that all the coefficients are real and positive.

a) Determine the phase difference at the transmitted wavefront between adjacent rays.

b) Write down the amplitude of each transmitted ray.

c) Determine the total intensity of the transmitted wave.

Note that: $r^2 + tt' = 1$