Exam #: _______________________
Printed Name: _______________________
Signature: _______________________

PHYSICS DEPARTMENT
UNIVERSITY OF OREGON
Master's Final Examination and Ph.D. Qualifying Examination, Part I
Monday, September 27, 2010, 9:00 a.m. to 1:00 p.m.

The examination papers are numbered in the upper right-hand corner of each page. Print
and then sign your name in the spaces provided on this page. For identification purposes,
be sure to submit this page together with your answers when the exam is finished. Be sure
to place both the exam number and the question number on any additional pages you wish
to have graded.

There are eight equally weighted questions, each beginning on a new page. Read all eight
questions before attempting any answers.

Begin each answer on the same page as the question, but continue on additional blank
pages if necessary. Write only on one side of each page. Each page should contain work
related to only one problem. If you need extra space for another problem, start a new page.

If you need to leave your seat, wait until everyone else is seated before approaching the
proctor.

Calculators may be used only for arithmetic, and will be provided. **Personal calculators
of any type are not allowed.** Paper dictionaries may be used if they have been
approved by the proctor before the examination begins. **Electronic dictionaries will
not be allowed.** **No other papers or books may be used.**

When you have finished, come to the front of the room and hand your examination paper
to the proctor; first put all problems in numerical order and staple them together.

Please make sure you follow all instructions carefully. If you fail to follow instructions, or
to hand in your exam paper on time, an appropriate number of points may be subtracted
from your final score.
Constants

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron charge (e)</td>
<td>1.60×10^{-19} C</td>
</tr>
<tr>
<td>Electron rest mass (m_e)</td>
<td>9.11×10^{-31} kg (0.511 MeV/c2)</td>
</tr>
<tr>
<td>Proton rest mass (m_p)</td>
<td>1.673×10^{-27} kg (938 MeV/c2)</td>
</tr>
<tr>
<td>Neutron rest mass (m_n)</td>
<td>1.675×10^{-27} kg (940 MeV/c2)</td>
</tr>
<tr>
<td>W^- rest mass (m_W)</td>
<td>80.4 GeV/c2</td>
</tr>
<tr>
<td>Planck's constant (h)</td>
<td>6.63×10^{-34} J·s</td>
</tr>
<tr>
<td>Speed of light in vacuum (c)</td>
<td>3.00×10^8 m/s</td>
</tr>
<tr>
<td>Boltzmann's constant (k_B)</td>
<td>1.38×10^{-23} J/K</td>
</tr>
<tr>
<td>Heat Capacity of Water</td>
<td>4.19 J/K/cm3</td>
</tr>
<tr>
<td>Gravitational constant (G)</td>
<td>6.67×10^{-11} N·m2/kg2</td>
</tr>
<tr>
<td>Permeability of free space (μ_0)</td>
<td>$4\pi \times 10^{-7}$ H/m</td>
</tr>
<tr>
<td>Permittivity of free space (ε_0)</td>
<td>8.85×10^{-12} F/m</td>
</tr>
<tr>
<td>Mass of Earth (M_\oplus)</td>
<td>5.98×10^{24} kg</td>
</tr>
<tr>
<td>Mass of Moon (M_{Moon})</td>
<td>7.35×10^{22} kg</td>
</tr>
<tr>
<td>Mass of Sun (M_\odot)</td>
<td>1.99×10^{30} kg</td>
</tr>
<tr>
<td>Radius of Earth (R_\oplus)</td>
<td>6.38×10^6 m</td>
</tr>
<tr>
<td>Radius of Moon (R_{Moon})</td>
<td>1.74×10^6 m</td>
</tr>
<tr>
<td>Radius of Sun (R_\odot)</td>
<td>6.96×10^8 m</td>
</tr>
<tr>
<td>Earth - Sun distance ($R_{\oplus,\odot}$)</td>
<td>1.50×10^{11} m</td>
</tr>
<tr>
<td>Classical electron radius (r_e)</td>
<td>2.82×10^{-15} m</td>
</tr>
<tr>
<td>Gravitational acceleration on Earth (g)</td>
<td>9.8 m/s2</td>
</tr>
<tr>
<td>Atomic mass unit</td>
<td>1.66×10^{-27} kg</td>
</tr>
<tr>
<td>One atmosphere (1 atm)</td>
<td>1.01×10^5 N/m2</td>
</tr>
</tbody>
</table>
Problem 1

A pendulum consisting of a thin uniform rod of mass M and length L is suspended by a frictionless bearing in the Earth's gravitational field.

![Diagram of a pendulum with mass M and angle θ.]

a. Determine the period of oscillation for small amplitude oscillations.

b. Compare this period to that of an ideal pendulum in which the entire mass M is located at a distance L from the bearing.
Problem 2

A uniform thin rod of mass M and length L is supported horizontally by two supports, one at each end. The acceleration of gravity, g, is constant and in the downward direction. At time $t = 0$, the left support is removed.

\[\text{Mg} \]

a. Determine the downward acceleration of the center-of-mass of the rod immediately after the support is removed in terms of M, L, and g.

b. Find the angular acceleration of the rod about the remaining support immediately after the support is removed in terms of M, L, and g.

c. Find the force exerted on the rod by the right support immediately after the left support is removed in terms of M, L, and g.
Problem 3

Consider the situation below: A mass m is attached to a massless string at some distance r

![Diagram of a mass m attached to a massless string at distance r with a constant force F from a hole.]

from a hole. The string is pulled down through the hole with a constant force F.

a. At what speed must the mass m move to remain at distance r?

b. F is increased adiabatically so that the radius of the orbit of m changes from its initial radius r to a final radius of $r/2$. Determine the work F performed on m.
Problem 4

A bead of mass \(m_2 \) slides on a frictionless vertical shaft under gravity with gravitational acceleration \(g \). It is connected by massless rigid rods to two other masses of equal mass \(m_1 \). The masses \(m_1 \) are each connected by rigid rods to a fixed pivot mounted on the shaft. The rods are connected in such a way that all four points (the pivot, and the three masses) always lie in a common vertical plane. The entire apparatus is free to rotate about the shaft, and is illustrated in the figure below. The entire system is frictionless.

![Diagram of the system](image)

a. Write down the Lagrangian for this system in terms of the variables \(\theta \) and \(\phi \), shown in the figure.

b. Find two independent conserved quantities.

c. If \(\frac{d\phi}{dt}(t = 0) \neq 0 \) and \(\theta(t = 0) \neq 0 \), can \(\theta(t > 0) \) ever = 0? If not, why not?
Problem 5

a. An infinitely long cylindrical conductor carries uniform current density J, directed into the page. The radius of the cylindrical conductor is R. Determine the force per unit length on this conductor exerted by a parallel wire filament which carries current I also directed into the page. The filament is located a distance d from the axis of the conductor.

b. An infinitely long cylindrical cavity with radius b is cut into the cylindrical conductor of part (a). The axes of the cavity, cylindrical conductor, and wire filament are parallel, and lie in the same plane. The cavity axis is distance a from the axis of the conductor, where $a + b < R$. Determine the force per unit length on the conductor exerted by the parallel wire filament assuming that the new conductor carries the same current density J and the filament carries the same current I as in part (a).
Problem 6

a. A conducting sphere of radius R_1 carries charge Q. Express the electric field of this conductor for distances $r > R_1$.

b. A second, initially uncharged conducting sphere of radius R_2, is placed at large distance from the first conducting sphere and then connected to the first sphere by a very long, fine wire. After the system of two conducting spheres reaches equilibrium, what will be the charge on the second conducting sphere?

c. If the distance between the two spheres is R, what will be the electric force between the two conducting spheres after the system has reached equilibrium? Assume $R_1 + R_2 \ll R$.
Problem 7

A monochromatic plane electromagnetic wave is incident on a planar glass/air interface with refractive indices \(n_1 \) and \(n_2 \), respectively, with \(n_1 > n_2 \). The wave approaches the interface with angle of incidence \(\theta_i \), where \(\theta_i \) is greater than the critical angle \(\theta_c \) for total internal reflection. The wave is polarized with its electric vector parallel to the interface.

![Diagram showing angles and vectors](image)

a. Set up the boundary condition equations for the electric and magnetic fields.

b. Determine the amplitude reflection coefficient for the electric field.

c. What happens to this amplitude reflection coefficient as the angle of incidence approaches the critical angle? Find an expression for the critical angle in terms of \(n_1 \) and \(n_2 \).
Problem 8

A capacitor is made of two infinite coaxial metal cylinders with a dielectric material in the space between them. The cylinders have radii a and b, respectively. The material has dielectric constant which varies with radius ρ as $k = \varepsilon/\varepsilon_0 = \eta\rho$ where k is the dielectric constant, ε is the permittivity, ε_0 is the permittivity of free space, and η is a constant. Under the assumption that the metal cylinders have infinite conductivity, find the capacitance per unit length of the system by finding the electrostatic energy contained in the region between the metal cylinders.