ABOUT

The CFAR Project Incubator (CPI) is a partnership between the University of Oregon Center for Art Research (CFAR) and Knight Campus for Accelerating Scientific Impact (KCASI), which affords artists working in any medium the opportunity to explore and conceptualize new work as a part of a vibrant, interdisciplinary research community that is supported by cutting-edge facilities and technical staff. This program is born out of CFAR and KCASI’s goals to create nimble systems that catalyze innovation and discovery by responding to the needs of individual’s specific research agendas. CPI’s emphasis is not necessarily on the production of a body of work, but instead on speculative, practice-based inquiry focused on ideation, experimentation, prototyping, testing, fabrication, and theoretical research to initiate and incubate new work.

This is not a traditional residency program where creatives live and work in a studio retreat setting. CPI residents live independently and embed in the University of Oregon research community as fellows with access to all of our libraries, museums, archives, and services as well as technical assistance, facilities, and resources that are specific to their project. This program is aimed toward the INCUBATION of a project, which may be new or in any stage of development and could benefit from focused time and access to resources that may otherwise be unavailable. This program seeks to support all matter of experimental art, craft, and design inquiry, even if outcomes may not be completely knowable, definable, legible, communicable, or exhibitable.

Projects do not have to focus on science or be rooted in scientific inquiry. This program is open to any creative practice, approach, and/or subject matter. Residents’ primary workspace will be at the Knight Campus for Accelerating Scientific Impact with access to UO School of Art + Design facilities on a case-by-case basis, depending on the nature of their project. Each application will serve as the beginnings of a research program. Once applicants have accepted our invitation to participate, they will work with CPI staff to develop an individualized program with access to facilities, technical staff, and connections to campus scholars and researchers in ways that best serve their project.

Because CPI has been designated a Ford Family Foundation Golden Spot, we offer generous support to Oregon artists manifesting in two residency tracks; a “LOCAL” track that is for artists who live a commutable distance (within 75 miles) from Eugene, OR and a “STATEWIDE” track that is for artists who require overnight accommodations. Each year, we aim to serve a minimum of four artists chosen from a pool of applicants to receive the distinction of Research Fellow, access to UO resources for one year, and an individualized on-campus residency tailored specifically to their project for a minimum of two-weeks and a maximum of eight weeks. Additionally, fellows will be given a generous stipend, housing (for those on the STATEWIDE track), and a designated workspace while in residence. Following the residency, some manifestation of each project will be made publicly accessible in a way that makes sense for each project, which may include, but is not limited to, a lecture, exhibition, or publication.
SUPPORT

Once accepted into the CPI program, residents will be given a courtesy appointment as a UO Research Fellow with access to general campus resources for one year. Residents will only be “in residence” receiving weekly support and occupying a research space with access to specialized facilities on campus for between 2-8 weeks depending on project needs. All weeks in residence must happen at one time, splitting it up into separate weeks throughout the year will not be permitted. Applicants can apply for either our LOCAL track or our STATEWIDE track.

LOCAL
(For artists who live less than ~75 miles from Eugene, OR)

$500 per week for materials, services, and incidentals to be used at discretion of each resident.

Courtesy Appointment as UO Researcher (See “RESOURCES” below for more details)

Designated KCASI workspace appropriate to the project.

STATEWIDE
(For artists who live a distance greater than ~75 miles from Eugene, OR)

$1000 per week for materials, services, food, and incidentals to be used at discretion of each resident.

Courtesy Appointment as UO Researcher (See “RESOURCES” below for more details)

Designated KCASI workspace appropriate to the project

Housing for STATEWIDE residents will be facilitated by CPI staff and coordinated with each artist. CPI will provide accommodations in a residential hotel suite (with kitchen, laundry access, etc.) unless the resident cares to make their own arrangements. All food and personal necessities will be the responsibility of the resident.

A NOTE RELATED TO SUPPORT AND RESOURCES

Once accepted into the CPI program, residents will be given a courtesy appointment as a UO Research Fellow with access to general campus resources for one year. Residents will only be "in residence" receiving weekly support and occupying a research space with access to specialized facilities on campus for between 2-8 weeks. In order to best coordinate residencies for people with a range of needs, all weeks in residence must happen at one time, splitting it up into separate weeks throughout the year will not be permitted. There will be no residencies from 12/20/21 – 1/3/2022. The CFAR Project Incubator is open to individuals and teams, however weekly stipends and housing allotments for STATEWIDE residence will only be afforded to one individual on each team.
RESOURCES

Each residency will be tailored toward the needs of each resident’s proposed project. Access to resources will be made available to CFAR Project Incubator fellows based on the needs of each project. Some resources will be available to all fellows regardless of the nature of their project, and some are subject to availability and may require specialized training and/or technical support, resulting from permissions granted on a case-by-case basis.

Research Fellow Resources

Research Fellows will have access to the systems, spaces, and resources afford to UO researches through a Courtesy Appointment for one year. Individuals who have this appointment will be issued a UO identification card and the following services will be made available to them:

Library Services

On-ground services at the College of Design Library, John E. Jaqua Law Library, Knight Library, Mathematics Library, Portland Library and Learning Commons, Price Science Commons and Research Library, Rippey Library (Oregon Institute of Marine Biology), and the Special Collections and University Archives.

Online services include various local, national, and international databases, archives, and scholars’ banks, as well as various systems for interlibrary loans related to all fields of academic study and government operation.

Technology Services

The right to purchase a Faculty/Staff parking permit

The right to use a variety of indoor and outdoor recreational facilities throughout campus

Access to University of Oregon Museums

Knight Campus for Accelerated Scientific Impact Resources

Research Fellows will have access to a range of spaces, equipment, and technical support within and adjacent to the KCASI program (NOTE: Following is a more detailed list of resources available through the Knight Campus Rapid Fabrication Facility):

KCASI offers a wide range of equipment and personnel related to rapid prototyping, analog and digital fabrication, imaging, and analysis technology. This includes, but is not limited to, a range of CNC Milling and 3D Printing Technologies, as well as advanced Electrical Discharge Machining, Laser Cutting, and more traditional forms of welding, etc.

The Technical Science Administration (TSA) is a collection of professional machinists and electrical engineers that support research projects through a range of high tech and analog approaches to specific projects. TSA is available to help researchers achieve solutions on their own using TSA equipment, or can be hired to fabricate elements for researchers.

The Center for Advanced Materials Characterization in Oregon (CAMCOR) is a full service, comprehensive materials characterization center, housing capital-intensive equipment for microanalysis, surface analysis, electron microscopy, semiconductor device fabrication, and traditional chemical characterization.

NOTE: Attached is a more detailed list of resources available through the Knight Campus Rapid Fabrication Facility.
School of Art + Design Resources
Research Fellows will have access to a range of spaces, equipment, and technical support within the School of Art + Design program on a case-by-case basis:

A variety of shops related to work with wood, metal, and plastics.

A variety of shops related to work with craft-based media such as ceramics, fibers, jewelry and metalsmithing, printmaking, and papermaking/book binding.

A variety of digital technology and software related to high-quality printing, vinyl cutting, rapid prototyping, physical computing, communication design, and video editing.

ELIGIBILITY

Applicants must be a practicing artist currently producing works of contemporary art, craft, and/or design

Applicants must demonstrate a professional record through appropriate documentation

Applicants must be a full-time Oregon resident and remain a resident through the duration of the residency period

Applicants must be age 18 years or older

Applicant must not be enrolled in a degree-seeking program, either part time or full time, during their residency period

The CFAR Project Incubator is open to individuals and teams

Timeline

June 1, 2021: Application Review Begins

July, 2021: Applicants Notified About Results

July – August, 2021: Program Development

October 2021 – August 2022*: Residencies
*Each residency will be limited to between 2-8 weeks
*There will be no residencies from 12/20/21 – 1/3/2022
LINKS

The Center for Art Research (CFAR)
The Knight Campus for Accelerating Scientific Impact (KCASI)
Knight Campus CORE Facilities
Center for Advanced Materials Characterization (CAMCOR)
Technical Science Administration (TSA)
School of Art + Design
University of Oregon Libraries
Knight Library
Design Library
John E. Jaqua Law Library
Mathematics Library
Rippey Library, Oregon Institute of Marine Biology
Allan Price Science Commons and Research Library
Special Collections and University Archives
Portland Library and Learning Commons
Jordan Schnitzer Museum of Art
Museum of Natural and Cultural History

QUESTIONS?

Contact CFAR Director Brian Gillis at bgillis@uoregon.edu with any questions.
APPLICATION
CFAR Project Incubator

This application will serve as the foundation for your research program. Applications will be reviewed by CFAR and KCASI staff to evaluate the quality of applicant’s previous work and professional record, possible impacts of this opportunity on the applicant and our interdisciplinary community, and the feasibility of proposed project.

APPLICANT NAME:

PRONOUNS:

DATE OF BIRTH:

MAILING ADDRESS:

EMAIL ADDRESS:

PHONE NUMBER:

WEBSITE:

NUMBER OF MONTHS LIVING IN OREGON:

ARTIST STATEMENT

WORK SAMPLES that best represents your practice
(Could simply be a link to your up to date website, a portfolio of 10-15 images on Slideroom or as an attached PDF of images with image descriptions, and/or up to two audio or video files that are less than 5 minutes in duration)

CV
(Attach as .doc or .pdf format)

Which residency track are you applying for?
LOCAL or STATEWIDE
RESIDENCY DURATION
Once accepted into the CPI program, residents will be given a courtesy appointment as a UO Research Fellow with access to general campus resources for one year. Residents will only be “in residence” receiving weekly support and occupying a research space with access to specialized facilities on campus for between 2-8 weeks depending on project needs. All weeks in residence must happen at one time, splitting it up into separate weeks throughout the year will not be permitted. Because we will be coordinating residencies for people with a range of needs, we ask that you provide us with a range of options for how long you would like to be in residence.

What is the ideal period of time you would like to be in residents?
What are the MAXIMUM amount of weeks you would like to be in residence?
What are the MINIMUM amount of weeks you would like to be in residence?
What are the dates, or range of dates you would like to be in residence?
Please list in priority order from first, to second, and third choice.
Example:
First - 2/1/22 to 3/1/22
Second – 2/1/22 to 3/1/22
Third to 2/1/22 to 4/1/22
NOTE: There will be no residencies from 12/20/21 – 1/3/2022

WORK PLAN
Please respond to the following prompts with as much information as you deem appropriate for reviewers to understand the nature of your proposed project and research program. Note that the information you give will help reviewers understand the nature of your project and how feasible it is given available time and resources, and will serve as the foundation for the research program we develop with you should you be invited to participate.

PROJECT DESCRIPTION
Less than ~500 words (~1 page) responding to the following questions using .doc or .pdf
What is your project?
What are your goals?
What will you make?
What do you need most to incubate your project?
How will CPI impact your project, practice, and/or career trajectory?
What else do we need to know to best understand your application?
ADDITIONAL PROJECT-RELATED INFORMATION
(NOT REQUIRED. Any Length. Attach as .doc or .pdf)

TIMELINE
Please outline goals and activities for each week you will be in residence. This does not have to be your final plan. We are asking for this timeline so our review panel can best understand how feasible your project goals are and whether we can accommodate your needs.

Example:
Week 1 – Orientation / Train on water jet cutter / Test print metal and rubber
Week 2 – Waterjet cutter / Make clay models / Print molds for metal casting
Week 3 – Cast silver / Fire clay models with printed nano parts / Train on letterpress
Week 4 – Make letterpress edition / Organize a public conversation with the Museum of Natural and Cultural History

EQUIPMENT AND FACILITIES REQUESTED
While there is no limit to what facilities and equipment can be requested, please understand that some KCASI equipment may require specific training, or may incur a material and/or labor cost, and some School of Art + Design facilities and equipment may only be accessible on a case-by-case basis. Please check all of the following materials, processes, or fields of inquiry you may be interested in exploring.

Welding, Soldering, Woodworking, Mold Making, Metal Casting, Plastics Casting, Ceramic Casting, Electrical Wiring, Weaving, Fabric Dying, Video Editing, Animation, Ceramics, Printmaking, Small Metals Fabrication, Printmaking, Papermaking, Bookmaking, Other

Product Design, Computer Programming, Biology, Physics, Geology, Chemistry, Engineering, Sociology, Physiology, Psychology, Anthropology, Botany, Zoology, Medicine, Meteorology, Other

NOTE: Attached is a more detailed list of resources available through the Knight Campus Rapid Fabrication Facility.
EXISTING EXPERIENCE
Existing experience in the following areas is NOT REQUIRED for a CPI Residency. We are asking this question in order to best understand how we can tailor a program toward your needs and what kinds of training and guidance may be required. Which of the following do you have functional experience in? Functional experience is defined by previous educational or work experience, and/or the ability to work individually without training or technical guidance.

- Analog Welding, Soldering, Woodworking, Mold Making, Metal Casting, Plastics Casting, Ceramic Casting, Electrical Wiring, Weaving, Fabric Dying, Video Editing, Animation, Ceramics, Printmaking, Small Metals Fabrication, Printmaking, Papermaking, Bookmaking, Other
- Product Design, Computer Programming, Biology, Physics, Geology, Chemistry, Engineering, Sociology, Physiology, Psychology, Anthropology, Botany, Zoology, Medicine, Meteorology, Other

PARTICIPATION
Are you interested in any opportunities to lecture about your work and/or participate in public group discourse related to your work or the work of other CPI, CFAR, or KCASI researchers?
Knight Campus Rapid Fabrication Facility
Metal Printer --- DMG SLM 30

Direct Laser Sintering, 99.95% fill

Rapid material changeover

- 300mm x 300mm x 300mm part size
- 0.02mm layer thickness
- 0.05mm spot size
- 1000W Fiber Laser
- Copper, Titanium, Stainless, and others
Composites Printer --- Markforged X7

Carbon fiber, Fiberglass, and Kevlar

Better strength-to-weight than aluminum

- Most rigid polymer print
- 13” x 10” x 8” part size
- 50 μm Z-axis resolution
Polymer Printer --- Formlabs Form 3

Biocompatible, flexible, clear, rigid, wax, and other materials available

Finished parts and mold negatives

- Large, accurate polymer prints
- 145mm x 145mm x 185mm part size
- 25 μm resolution
Exaddon printer

Micron Scale Metal 3D printer

Gold, Copper, and others

- 100mm x 70mm x 60mm chamber volume
- 500 nm feature size
Exaddon printer
NanoScribe GT2 polymer printer

Sub-micron Scale Polymer 3D printer

200 nm feature size

- On-chip and on-fiber printing
- Microfluidics valves
- 100mm x 70mm x 60mm chamber volume
- XY ±250 nm & Z ±5 nm positioning precision
Dragonfly PCB Printer

Flexible or rigid print options

Three dimensional circuit layout via 120 layers

- Multi-layer 100 micron Space/Trace
- 200mm x 200mm x 3mm Boards
- *In situ* component placement
Kern Micro Vario 5 axis Precision Mill

1 micron accuracy throughout work space

105 tool automated changer

30 part workpiece automated changer

- 350mm diameter x 200mm height
- 42,000 RPM Spindle
- Part shown in corner is milled, not polished
CNC Bed Mill --- Datron M8 Cube

Vacuum surface part holding
Automated tool changer
Automated tool length setting

- 30” x 42” x 8” part size
- 60,000 RPM Spindle
- Integrated Camera System
CNC Mill --- Datron Neo

Vacuum surface part holding

Automated tool changer and setter

- Aluminum, brass, plastics
- 20” x 16” x 8” part size
- 40,000 RPM
- 4th (rotary) Axis
Coherent Exact Cut 430 Laser

Precision shapes from ceramics and metal

10 μm positional accuracy

- Ceramics, Metals, Glass
- 500mm x 500mm work area
- 4th (rotary) axis
Circuit Board Laser Mill - LPKF

Rapid prototyping of Printed Circuit Boards

10 μm positional accuracy

- Ceramics, Metals, Glass
- 300mm x 250mm work area
- 50 μm trace, 30 μm space
Micro Wire EDM

Sub-Micron resolution

Mirror surface finish

- Any conductive material
- 300mm x 200mm x 100mm part size
- 4th (rotary) Axis
- Highest precision EDM in the world, using 20 μm wire
Laser Welder

Precision micro-welding

Automated rotary and linear part motion

Joystick and foot pedal control

- 80J peak power
- Leica Optics
Waterjet Cutter - Flow Mach 200

60,000 PSI pump

Multi-Axis head

Cuts through most materials up to 12” thick

- Metal, Ceramic, Glass, Foam, Stone, Plastic
- 78” x 120” x 12” part size
CNC Toolroom Lathe --- Haas TL1

- Precision part turning
- 16” Part Diameter
- 30” Part Length

- 1600 RPM
- Automated 8 position tool turret
Questions?

Contact Brian Gillis
bgillis@uoregon.edu