Let $X = (X_1, \ldots, X_n)$ be a random sample taken from the distribution $f_\theta(\cdot)$ where θ is the unknown parameter.

An estimator $\delta(X)$ is a function of the sample X.

Two desirable properties of estimators under repeated experiments:

- “Overall accuracy”: $\mathbb{E}(\delta(X)|\theta)$ is close to θ.
- “Precision”: $\text{Var}(\delta(X)|\theta)$ is small.

An estimator $\delta(X)$ for θ is said to be unbiased if its overall accurate for all possible values of θ. That is

$$\mathbb{E}(\delta(X)|\theta) = \theta, \quad \text{for all } \theta. \quad (1)$$

The bias of $\delta(X)$ given θ is defined to be

$$B_\delta(\theta) = \mathbb{E}(\delta(X)|\theta) - \theta. \quad (2)$$
Properties of an estimator - a review (STAT 310) II

- $B_{\delta}(\theta) > 0$: $\delta(X)$ tends to overestimate θ.
- $B_{\delta}(\theta) < 0$: $\delta(X)$ tends to underestimate θ.

- Neither unbiasedness nor precision alone is enough. More generally, the goal is to have estimators likely to take values close to the unknown fixed parameter.

- We use a loss function $L(\theta, a)$ as a notion of distance between the estimate and the parameter, and choose an estimator that minimizes the expected loss of $\delta(X)$.

- Under the squared error loss, i.e., $L(\theta, a) = (\theta - a)^2$, this leads to the mean squared error (MSE):

$$MSE_{\delta}(\theta) = E\{(\delta(X) - \theta)^2|\theta\} = Var(\delta|\theta) + B_{\delta}(\theta)^2. \quad (3)$$

- This is sometimes referred to as the Bias-Variance trade-off. We want estimators that strike a balance between small bias and small variability.
Note that bias, variance and MSE are computed using only information available \textit{before the experiment}, not the observed value of the data.

These are the \textit{average} distances between the estimator \(\delta(X) \) and the parameter \(\theta \) \textit{if the experiment is repeated many times} under fixed parameter value \(\theta \). Recall that this is the sampling/frequentist perspective in contrast with the Bayesian viewpoint.

The estimator \(\delta(X) \) is chosen using information available before the experiment. The estimate given data \(X = x \) is simply the plug-in value of that estimator, i.e., \(\delta(x) \).

Under the sampling perspective, do we know anything about how far our realized estimate \(\delta(x) \) is from the underlying \(\theta \)? The answer is No.
Note on notation: lower case \((x, y)\) vs. upper case \((X, Y)\).

- In many contexts (such as STAT310), we use the upper case for a random variable and lower case for its realization.
- In STAT410, we use the lower case \(y\)'s for both random variables and the corresponding realizations unless stated otherwise.
- The regressor \(x\) can be viewed as fixed constants thoroughly for our purposes:
 - Even with a random design for \(x\)'s, our model is conditional on \(x\)'s thus \(x\)'s can be viewed as given.
Properties of estimators in SLR

- LS estimators \((\hat{\beta}_0, \hat{\beta}_1)\)
 - \((\hat{\beta}_0, \hat{\beta}_1)\) are unbiased estimators of \((\beta_0, \beta_1)\):
 \[
 E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1.
 \] (4)

- (Marginal) variances of \((\hat{\beta}_0, \hat{\beta}_1)\):
 \[
 \text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \quad \text{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right).
 \] (5)

- Both \(\hat{\beta}_0\) and \(\hat{\beta}_1\) are linear combinations of \(y_i\).
- LS estimators are the Best Linear Unbiased Estimators (BLUE), known as the **Gauss-Markov theorem**.

- The estimator of variance \(\hat{\sigma}^2 = \sum_{i=1}^{n} e_i^2 / (n - 2)\) is unbiased.
 - \(\sum_{i=1}^{n} e_i^2\): residual (error) sum of squares, denoted as \(SS_{Res}\).
 - \(\sum_{i=1}^{n} e_i^2 / (n - 2)\): residual mean square, denoted as \(MS_{Res}\).
Inferences on model parameters

- Gaussian assumption on the error term:
 \[\varepsilon_i \sim_{i.i.d.} N(0, \sigma^2). \] (6)

- All the previous moment properties do not depend on this assumption.

- We need this normal assumption in order to make **inferences** on parameters such as:
 - Hypothesis testing
 - Interval estimation

- Under the assumption of (6), we obtain that
 \[\hat{\beta}_0 \sim N \left(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right) \right), \quad \hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{S_{xx}} \right), \] (7)

 and
 \[\frac{(n - 2)\widehat{\sigma}^2}{\sigma^2} = \frac{SS_{Res}}{\sigma^2} \sim \chi^2_{n-2}. \] (8)
Suppose we wish to test the hypothesis that the slope equals a constant, say β_{10}.

The hypotheses are

$$H_0 : \beta_1 = \beta_{10}, \quad H_1 : \beta_1 \neq \beta_{10}$$

Test statistic:

$$T = \frac{\hat{\beta}_1 - \beta_{10}}{\text{se}(\hat{\beta}_1)},$$

where $\text{se}(\hat{\beta}_1) = \sqrt{\hat{\sigma}^2/S_{xx}} = \sqrt{MS_{Res}/S_{xx}}$.

- Recall: standard error (se) of an estimator is its estimated standard deviation.

- $T \sim t_{n-2}$ under H_0 - Null distribution of T.

- Reject H_0 if $|T| > t_{\alpha/2,n-2}$, where $t_{\alpha/2,n-2}$ is the upper $\alpha/2$ percentage of t_{n-2}.

- P-value $= 2(1 - F_{t_{n-2}}(|T|))$, where $F_{t_{n-2}}$ is the CDF of t_{n-2}.

Suppose we wish to test the hypothesis that the intercept equals a constant, say β_{00}.

The hypotheses are

$$H_0 : \beta_0 = \beta_{00}, \quad H_1 : \beta_0 \neq \beta_{00} \quad (11)$$

Test statistic:

$$T = \frac{\hat{\beta}_0 - \beta_{00}}{\text{se}(\hat{\beta}_0)}, \quad (12)$$

where $\text{se}(\hat{\beta}_0) = \sqrt{\frac{MS_{Res}}{n} \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)}$.

$T \sim t_{n-2}$ under H_0 - Null distribution of T.

Reject H_0 if $|T| > t_{\alpha/2,n-2}$, where $t_{\alpha/2,n-2}$ is the upper $\alpha/2$ percentage of t_{n-2}.

P-value $= 2(1 - F_{t_{n-2}}(|T|))$, where $F_{t_{n-2}}$ is the CDF of t_{n-2}.
$H_0 : \beta_1 = 0, \quad H_1 : \beta_1 \neq 0$

- This tests the **significance of regression**; that is, is there a linear relationship between the response and the regressor.
- Failing to reject $\beta_1 = 0$, implies that there is no linear relationship between y and x.
100(1 − α)% Confidence interval for the Slope:

\[\hat{\beta}_1 - t_{\alpha/2,n-2}se(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2,n-2}se(\hat{\beta}_1). \]

100(1 − α)% Confidence interval for the Intercept:

\[\hat{\beta}_0 - t_{\alpha/2,n-2}se(\hat{\beta}_0) \leq \beta_0 \leq \hat{\beta}_0 + t_{\alpha/2,n-2}se(\hat{\beta}_0). \]

100(1 − α)% Confidence interval for \(\sigma^2 \):

\[\frac{(n-2)MS_{Res}}{\chi^2_{\alpha/2,n-2}} \leq \sigma^2 \leq \frac{(n-2)MS_{Res}}{\chi^2_{1-\alpha/2,n-2}}. \]
Let x_0 be the level of the regressor variable at which we want to estimate the mean response, i.e.

$$E(y|x_0) = \mu_{y|x_0} = \beta_0 + \beta_1 x_0.$$

Point estimate: $\hat{E}(y|x_0) = \hat{\mu}_{y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$

Variance of $\hat{\mu}_{y|x_0}$:

$$\text{Var}(\hat{\mu}_{y|x_0}) = \text{Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \text{Var}(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x}))$$

$$= \text{Var}(\bar{y}) + \text{Var}(\hat{\beta}_1 (x_0 - \bar{x}))$$

$$= \frac{\sigma^2}{n} + \frac{\sigma^2(x_0 - \bar{x})^2}{S_{xx}} = \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right),$$

where (13) uses the fact that $\text{Cov}(\bar{y}, \hat{\beta}_1 (x_0 - \bar{x})) = 0$.

100(1 − α)% confidence interval for $E(y|x_0)$:

$$
\hat{\mu}_{y|x_0} - t_{\alpha/2,n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)} \leq E(y|x_0)
$$

$$
\leq \hat{\mu}_{y|x_0} + t_{\alpha/2,n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}.
$$
Prediction interval of new observations

- Suppose we wish to construct a prediction interval on a future observation, \(y_0 \) at a particular level of \(x \), say \(x_0 \).
- Point estimate: \(\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \).
- The confidence interval on the mean response at this point is not appropriate for this situation. (Why?)
- \(y_0 = E(y|x = x_0) + e_0 \) thus is more uncertain than \(E(y|x = x_0) \).
- It can be shown:

\[
E(y_0 - \hat{y}_0) = 0, \quad \text{Var}(y_0 - \hat{y}_0) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right),
\]

which uses the fact that \(y_0 \) is independent of \(\hat{y}_0 \).
- \(100(1 - \alpha)\% \) prediction interval on \(y_0 \):

\[
\hat{y}_0 - t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)} \leq y_0 \leq \hat{y}_0 + t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}.
\]