Our problem: How to get the lifetime characteristics of components from system lifetimes?

- In reliability study, experimenters are interested in the lifetime distribution of the components as well as the lifetime distribution of the system.
- We only observe the system lifetime, not the component lifetime.
- Our mission is to do statistical inference on the component lifetime distribution based on the SEM algorithm.

SEM Algorithm

Suppose T is the observed data and Z is the missing data, the complete data is $X = (T, Z)$ and the likelihood function based on complete data is $L(\theta; X)$, where θ is the parameter of interest. SEM algorithm is an iterative procedure that replaces the missing data Z with a single draw from conditional distribution of Z [5-step] and maximizes the complete-data likelihood to update the parameter estimate (M-step).

SEM algorithm for complete data

- **SEM algorithm based on ordinary system signature:**
 - Right-truncated distribution
 $$\phi_k(z; \theta_k) = \frac{f_k(z; \theta_k)}{S_k(z; \theta_k)}$$
 - Left-truncated distribution
 $$\psi_k(z; \theta_k) = \frac{F_k(z; \theta_k)}{S_k(z; \theta_k)}$$

 Where f_k, F_k, S_k are the density function, cumulative density function and survival function of component lifetime X_k, respectively. Assume there are n components in each system. For the $(k+1)$-th iteration, given the current value $\theta^{(m)}$ and observed m system lifetimes, the 5-step and M-step are:

 5-step:
 1. For k-th system, generate a discrete random variable Δ_k based on signature x_k with probability $Pr(\Delta_k = 0) = s_0$, $\Delta = 1, \ldots, n$
 2. Generate $\delta - 1$ random variables from distribution (1), with $\theta = \theta^{(m)}$, s_k, $x_k(\delta - 1)$
 3. Generate $n - \delta$ random variables from distribution (2), with $\theta = \theta^{(m)}$, s_k, $x_k(n - \delta)$
 4. The pseudo-complete sample for system k is $x_k = (x_{k1}, x_{k2}, \ldots, x_{k\delta}, x_{k\delta+1}, \ldots, x_{kn})$
 5. Repeat steps 1-4 for $k = 1, \ldots, m$

 M-step:
 - Maximize the log-likelihood function
 $$L(\theta; x_1, x_2, \ldots, x_m) = \sum_{k=1}^{m} \log f(x_k; \theta)$$
 - With respect to θ to obtain $\theta^{(m+1)}$.

- **SEM based on ordered system signature (SEM-OSS)**
 - S-step: 1. For k-th ordered system, generate a discrete random variable Δ based on ordered signature $x(k)$ with probability
 $$Pr(\Delta = 0) = s_k^{(m)}(x(k, \delta))$$
 - 2-step: M-step: Maximize the log-likelihood function

- **SEM algorithm for Type-II censored data**
 - Impulse component lifetimes directly (SEM-I)
 - Suppose system is working at time t_r, $y^{(m+1)}(t_r)$ out of n components failed $[T_1 > t_r]$
 $$p^{(m)}_r(t) = \left(\sum_{k=1}^{m} \frac{n}{\prod_{j=1}^{n} F_k(y^{(m+1)}(t))} \left(\prod_{j=1}^{n} F_k(y^{(m+1)}(t)) \right)^{r-1} \prod_{j=1}^{n} \left(1 - F_k(y^{(m+1)}(t)) \right) \right)$$

 If observed system lifetime is $t_{c, m} < t_r$, then $t = t_{c, m}$

Example

- Signature: $1, 1, 1, 1, 1, 0$.
- Sample size: $n = 10$.
- Location parameter = 1.09861, Scale parameter $= 5$ (1), with underlying SEV distribution.

- **Results**
 - Monte-Carlo simulation is carried out to evaluate the performance of the proposed methods, comparing to MLE, in terms of difference and mean squared error (MSE), with different signatures $x_k = (1, 1, 1, 1, 1, 0), \ y_k = (0, 0, 0, 0, 0)$
 - The underlying component lifetime distribution is smallest extreme value (SEV) distribution with $\mu = 0$ and $\sigma = 1$

 I. Performance of SEM algorithm for complete system lifetime data comparing to MLE

 - SEM-OSS vs. MLE
 - SEM-OSS vs. MLE
 - SEM-OSS vs. MLE

 Discussion

 1. For complete case, the SEM-OSS algorithm performs almost the same as the MLE in the SEM-I algorithm.
 2. For Type-II censored case, SEM-I algorithm and SEM-II algorithm perform similarly in the sense that both approximate the MLE very well.
 3. When censoring proportion is small to moderate (say, $q \leq 0.4$), SEM-II algorithm is recommended.
 4. When censoring proportion is large (say, $q > 0.4$), SEM-I algorithm is recommended.

Reference