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ABSTRACT

The inter-beat-interval (time period of the cardiac cycle) changes slightly for every heartbeat; this variation is
measured as Heart Rate Variability (HRV). HRV is presumed to occur due to interactions between the parasym-
pathetic and sympathetic nervous system. Therefore, it is sometimes used as an indicator of the stress level of
an individual. HRV also reveals some clinical information about cardiac health. Currently, HRV is accurately
measured using contact devices such as a pulse oximeter. However, recent research in the field of non-contact
imaging Photoplethysmography (iPPG) has made vital sign measurements using just the video recording of any
exposed skin (such as a person’s face) possible. The current signal processing methods for extracting HRV using
peak detection perform well for contact-based systems but have poor performance for the iPPG signals. The
main reason for this poor performance is the fact that current methods are sensitive to large noise sources which
are often present in iPPG data. Further, current methods are not robust to motion artifacts that are common in
iPPG systems. We developed a new algorithm, CameraHRV, for robustly extracting HRV even in low SNR such
as is common with iPPG recordings. CameraHRV combined spatial combination and frequency demodulation
to obtain HRV from the instantaneous frequency of the iPPG signal. CameraHRV outperforms other current
methods of HRV estimation. Ground truth data was obtained from FDA-approved pulse oximeter for validation
purposes. CameraHRV on iPPG data showed an error of 6 milliseconds for low motion and varying skin tone
scenarios. The improvement in error was 14%. In case of high motion scenarios like reading, watching and
talking, the error was 10 milliseconds.
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1. INTRODUCTION

Heart rate variability (HRV) captures the variation in the time interval between consecutive heartbeats.1 Cur-
rently, HRV is accurately measured using the electrocardiographic device (ECG). Pulse rate variability (PRV)
obtained from the Photoplethysmographic (PPG) signal uses pulse cycles as a substitute to the RR intervals
obtained from the QRS complex of the ECG signal. PRV is equivalent to HRV obtained from the ECG signal
when the subject is at rest.2 HRV parameters are potential indicators for stress levels and cardiac health. Thus,
HRV has gained significance over the past few decades.

Contact-based systems like the ECG and pulse oximeter have limited practicability. Such systems are predis-
posed to infection-related concerns due to their contact nature. Contact devices are inconvenient to use during
HRV data collection procedures lasting up to 24 hours. Non-contact based HRV measurements obtained from
imaging photoplethysmography can potentially provide a solution to such limitations.

Imaging Photoplethysmography (iPPG)3–5 uses the phenomenon that as blood volume changes in the arteries
and capillaries beneath the skin surface, the intensity of light reflected by the blood also changes. This change in
the reflected light can be measured using a simple consumer grade camera even under an ambient light setting.
Thus, by using a simple video recording of a person’s face (or exposed skin surface) various vital signs like heart
rate can be extracted accurately.6 Few successful attempts7–9 have been made on extracting HRV from the
iPPG signal. Custom peak detection algorithms used in these attempts can lead to incorrect inter-beat interval
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estimates. Incorrect inter-beat interval estimates arise due to false peaks and artifacts present in the iPPG signal
of low signal quality. HRV parameters are directly derived from the values of the inter-beat interval estimates.
Incorrect beat-to-beat estimates introduce a large error in the HRV parameters.

Research over past few decades has explained how the HRV arises due to modulation of the heart rate fre-
quency by the sympathetic and parasympathetic nervous system.10 In this paper, we propose CameraHRV,
which leverages the concept that HRV information is related to the instantaneous frequency variation of the
periodic pulse signal.11–13 This relation allowed us to extract the phase of the iPPG signal by frequency de-
modulation. Also, using the prior information known about HRV, we obtained a continuous beat to beat HRV
measurement. We compared the performance of CameraHRV to current HRV estimating methods like peak
detection,8 and continuous wavelet transform filtering.14 We showed that for iPPG signals that are of low signal
quality, obtaining HRV information through instantaneous frequency is more reliable than current time domain
approaches like peak detection.

We quantified the error in all the methods for different iPPG signal quality resulting due to varying skin tones,
and for different high motion scenarios like reading, watching videos, and talking. CameraHRV improves the
accuracy of time domain HRV parameters by 10 milliseconds for dark skin tone subjects, and by 5 milliseconds
for motion scenarios. CameraHRV shows a percent error of 20%. The improvement is large over continuous
wavelet filtering method which has an error of 34%. The peak detection approach breaks with an error of 98%.
Under scenarios of low motion, CameraHRV presents an error of 6 milliseconds across different skin tones. But
under high motion scenarios, CameraHRV also fails to provide accurate HRV measurements along with the other
methods. Hence, there is scope for further improvement of the algorithm for high motion scenarios.

CameraHRV is a step towards increasing the potential of non-contact based HRV measurements. Potential
scenarios include the use of the front facing cameras on the laptops or smartphones during online activities
without the requirement of a wrist-worn device.

2. CAMERAHRV

The proposed algorithm CameraHRV had three main steps. First, was the detection of feature points of the face
in the frames of the video, and dividing the detected face area into smaller regions of interest (ROIs). Second,
was the extraction of the iPPG signal from the ROIs. Third, was the extraction of instantaneous frequency, and
reconstruction of the first harmonic of the iPPG signal.

2.1 Face detection and ROI selection

We used the OpenFace15,16 toolkit for facial landmark detection. It tracks 68 feature points on the face. We
obtained the 68 feature points for every frame of a particular subject’s video recording. For every frame, a
boundary was created with the feature points as shown in the Figure 1. The 8 feature points marking the
eyebrows were shifted upwards to include the forehead region as well. We masked all the regions outside the
boundary created with the feature points. We also masked the eye areas, and the lip regions. The unmasked
area of the frame in the videos was divided into smaller grids each of 20 × 20 pixels. Each grid was tracked using
the KLT tracker.17,18 The tracked grids confined in the unmasked region of the video frames were selected as
the regions of interest (ROIs).

2.2 Extraction of imaging photoplethysmography signal from videos

After identifying the ROIs, we robustly extracted the iPPG signals from these regions. It is established in earlier
research6 that the absorption spectra of the prominent blood chromophores are maximum in the passband range
of the green filters used in color cameras. Hence, we used the pixel intensities of the single green channel video
recordings to obtain the iPPG signal. We first averaged the pixel intensities within each ROI to obtain the
reflected light intensity signal as

R(r, t) = c(r) + x(r, t) + w(r, t), (1)

where R(r, t) was the reflected light intensity signal. c(r) was the constant light reflection component by skin
surface, and tissue, which depends only on ROI r. x(r, t) represents the pulsatile component, which was our signal
of interest. w(r, t) was the additive noise component dominated by motion artifacts, and changes in illumination.
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Figure 1. a) Tracking ROIs bounded by facial landmark points using KLT. b) iPPG signal waveform obtained. c) Power
Spectrum of instantaneous frequency after Hilbert transform, and complex demodulation. d) Reconstructed first harmonic
of iPPG signals after low pass filtering of phase. e) Inter beat intervals estimated from video compared with inter beat
intervals from ground truth pulse oximeter.

.

The w(r, t) component was stronger for subjects with darker skin tone due to higher melanin content present in
the skin. High melanin content hinders absorptions of light by the chromophores present in the blood.

To obtain an iPPG signal of good signal quality we adopted the Maximal Ratio Combining algorithm,8

summarized as follows. First, the reflected light intensity signal was temporally filtered using the bandpass filter
[0.5,4] Hz which corresponds to the heart rate range of 30 bpm to 240 bpm. The filtering also helped to remove
the noise present outside the band of interest. The filtered signal y(r, t) was dependent on the ROI, and time.
x(r, t) was the pulsatile component in the passband of the filter, and n(r, t) was the noise present with the signal
in the passband, resulting in,

y(r, t) = x(r, t) + n(r, t). (2)

We defined an amplitude range for every ROI as A(r) = max(y(r, t)) − min(y(r, t)) in accordance with the
earlier work.8 We rejected ROIs where A(r) > 8. We found a coarse estimate of pulse rate PR by spatially
averaging y(r, t) from all non-rejected ROIs, and detecting the peak in the power spectral density. The PR was
used to define a goodness metric G(r) for every ROI as follows:

G(r) =

∫ PR+b

PR−b Y (r, f)∫ 4

0.5
Y (r, f) −

∫ PR+b

PR−b Y (r, f)
, (3)

where Y (r, f) was the power spectral density of the filtered signal y(r, t). The HRV information associated
with the fundamental harmonic was present in the sidebands of the PR. HRV information is generally present
between [0.04,0.45] Hz in the spectrogram of the instantaneous frequency. Hence, we estimated the power of the
signal of interest around the PR with b as 0.45 Hz.

We calculated the A(r), and G(r) for every non-rejected region, and computed its mean as Amean, and
Gmean respectively. The spatially combined iPPG signal p(t) is then computed using all the non-rejected ROIs
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as follows,

p(t) =
∑

y(r, t)I(A(r) < Amean and G(r) > Gmean), (4)

where I(.) was the indicator function. Note that we did not compute the product of G(r)y(r, t) in the summation
as done in earlier work.8 The pulse signal is modulated by the HRV information. It is present in the sidebands
around the first harmonic in the spectrogram of the iPPG signal. We were only interested in the first harmonic
of the signal so computing the product did not hold relevance in our application. The goodness metric did not
reflect the signal to noise ratio of the first harmonic alone. Hence, we just spatially averaged regions as shown
in equation 4.

2.3 Extraction of instantaneous frequency and reconstruction iPPG signal first harmonic

Once the iPPG signal from the videos are obtained, the next step was to perform frequency demodulation on
the iPPG signals to extract the HRV information. The iPPG signal p(t) was a quasi-periodic signal with a slight
variation in the heart rate frequency. This slight variation about the constant frequency was represented as the
variation in phase of the signal as follows,

1

2π

dφ(t)hrv
dt

= fhrv. (5)

Thus, we modeled the first harmonic of the PPG signal ph1(t) as

ph1(t) = a(t) cos(2πfhrt+ φ(t)hrv), (6)

fhr was computed by detecting the peak in the power spectral density of p(t). For obtaining the first harmonic
ph1(t), p(t) is bandpass filtered around the constant frequency, [fhr − 0.6, fhr + 0.6] Hz.

Using the principle of complex demodulation, and Hilbert transform11–13 we obtained φ(t)hrv. First, we
computed the Hilbert transform of ph1(t) as H(ph1(t)), which converts the real signal ph1(t) into an analytic
signal H(ph1(t)) as follows,

H(ph1(t)) = a(t)ei(2πfhrt+φ(t)hrv). (7)

We then demodulated the analytic signal as

H(ph1(t))e(−i2πfhrt) = a(t)ei(φ(t)hrv). (8)

As the demodulated phase HRV signal was now in the zero-frequency band, we temporally filtered it with a low
pass filter with a cut-off frequency of 0.55 Hz. The HRV information is generally present between [0, 0.45] Hz
but we used a larger band for filtering so that the roll off of the narrow low pass filter does not alter the HRV
information. The beat to beat variations is often in the range of a few ten milliseconds. Thus, the signal strength
of HRV is very low. Noise present in the iPPG signal easily corrupts the instantaneous phase, and frequency
variation of the signal. Thus, peak detection on the iPPG signal provides erroneous estimates.

Filtering between [0, 0.55] Hz gives us a coarse estimate of the phase hrv signal φ(t)hrv which was noisy.
To obtain a better estimate we filtered it using a low pass filter with a cut-off frequency dependent on the
breathing rate. The high-frequency spectra of HRV [0.15 0.45]Hz is associated with respiratory arrhythmia, and
tracks the breathing rate across a range of frequencies. The respiratory arrhythmia is the main modulator in the
high-frequency range of the HRV information. Hence, we used the breathing rate frequency BR to calculate the
cut-off frequency of the low pass filter. The cut-off frequency was calculated in the following manner.

We obtained fhrv from the property of equation 5. The power spectral density of the fhrv was obtained as
Fhrv. Although BR is the primary modulator, slight power in frequencies beyond the BR also contribute to the
value of the HRV parameters. But the power in the frequencies of range [BR, 0.55] Hz was less compared to
the power associated with BR peak. These frequency peaks were easily corrupted by noise. But the power of
the noise peaks was not higher than the power of the BR peak. It was also not as low as other peaks due to
HRV information. Using this observation we used a power threshold powth = 0.2 · Fhrv(BR). The final cut-off
frequency was defined as follows.
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fcutoff = max(f) such that f > BR and Fhrv(f) < powth. (9)

where f was the range of frequencies [BR, 0.55] Hz. A value of 0.2 was chosen because it worked well for our
dataset consisting of 30 data points.

As the bandwidth of the filter was very narrow typically of 0.4 Hz, a gradual roll-off leads to an inaccurate
estimation of HRV metrics. Thus, we used the finite impulse response filter (FIR filter) of order 350 for a
sampling rate of 30 Hz. After detecting the BR peak, if the cut-off frequency was found to be less than 0.4 Hz
then we set it to a default of 0.4 Hz. Otherwise, it would lead to considerable HRV information being filtered
out. We do lose some HRV information but we prevent too much error in our parameter estimates.

The filtered demodulated phase HRV signal is lp. As lp is an analytic signal the corrected phase HRV signal
is obtained as follows:

φ̂(t)hrv = tan−1 imag(lp)

real(lp)
. (10)

We filtered φ̂(t)hrv using the same cut-off frequency discussed above to remove any distortions arising due
to the nonlinear inverse tangent transformation. Then, we reconstructed the first harmonic component of the
iPPG signal as follows:

pcamera(t) = cos(2πfhr + φ̂(t)hrv). (11)

pcamera(t) was then used to obtain the inter beat interval, and HRV time domain parameters.

3. RESULTS AND DISCUSSIONS

3.1 Methods for comparison

To test the performance of the proposed algorithm CameraHRV, we compared it with two other HRV estimating
methods.8,14 For all the three methods the distancePPG algorithm8 was used to obtain the iPPG signal. The
HRV estimation methods adopted for comparison purposes are the following. In the first method,8 a simple
peak detection was used on the iPPG signals. We named the first method as DistancePPG-Peak. Peak detection
methods are susceptible to false peaks that completely skew HRV measurements. So, we compared with a second
method14 that was a continuous wavelet filtering method. In the continuous wavelet filtering method, a wavelet
energy curve was used to filter continuous wavelet transform coefficients of the iPPG signal. After filtering, an
inverse continuous wavelet transform was used to obtain a less noisy iPPG signal. We named this second method
as DistancePPG-CWT. We used the PPG signal obtained from an FDA approved pulse oximeter as ground
truth.

3.2 HRV Time domain parmeters

Comparison of the three algorithms was performed for two-time domain HRV parameters. The parameters were
SDNN which is standard deviation of interbeat intervals, and SDSD which is standard deviation of successive
difference in interbeat intervals.19

The interbeat interval (IBI) of the nth heartbeat is defined as IBI(n) = Timepeak(n) − Timepeak(n − 1).
Successive differences of interbeat intervals is defined as SD(n) = IBI(n) − IBI(n− 1). SDNNhrv is standard
deviation of IBI. SDNNhrv is related to the total power of HRV, and the long-term HRV variation. SDSDhrv

is standard deviation of SD. SDSDhrv is related to the HF power of HRV, and the short-term HRV variation.

To calculate the interbeat interval, findpeaks function in Matlab was used to detect the peaks on the PPG
signal estimates. Spurious peaks located too close to each other were rejected. We imposed a condition that
consecutive peaks should be at least 0.5/fhr seconds apart.
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3.3 Dataset

To understand the effect of different signal quality on the accuracies of the time domain HRV parameters, we
used two different datasets. The two different datasets were the skin tone dataset, and the motion dataset
from the DistancePPG paper.8 The skin tone dataset consists of 18 single channel(green) videos taken from 9
subjects of varying skin tones ranging from pale white to dark, 5 male, and 4 female. Each subject provided
two 40 seconds videos. The subjects were asked to remain stationary but the involuntary movement was not
restricted. Involuntary motion seen in the videos consisted of slight facial movements. The motion dataset
consists of a total of 12 single channel(green) videos of 40 seconds duration each taken from 4 subjects of a fair
skin tone. Each subject volunteered 3 videos where they were either only reading, watching or talking. The
motion dataset had an additional 6 motion videos from 2 subjects of a darker skin tone which we used separately.
These dataset collections were approved by the Rice University Institutional Review Board (Protocol number:
14-45E, Approval Date: 3/04/2014). The motion seen in the motion dataset consists of a large amount of facial
movement, and head motion. Table 1 shows the range of HRV present in both the datasets across different videos
of all the subjects.

Table 1. Range of values of the SDNNhrv ,SDSDhrv in the different datasets. The parameters are calculated using the
gold standard pulse oximeter

Ground truth HRV Time Domain Parameters over 40 second time window
Mean ± standard deviation in milliseconds

Dataset Skin Tone (18 videos, 9 subjects) Motion (12 videos, 5 subjects)
SDNNhrv (45 ± 23) ms (51 ± 16) ms
SDSDhrv (52 ± 30) ms (47 ± 16) ms

3.4 CameraHRV Performance

We divided the performance analysis of CameraHRV into two parts. First, we analyzed error in the two-time
domain parameters for different skin tones ranging from pale white to dark brown skin tone as shown in Figure
2, and 3. Second, we analyzed the error for high motion affected scenarios such as reading, watching videos, and
talking.

3.4.1 Skin Tone

As the quality of the iPPG signal varies considerably with skin tone, it is essential to test how the algorithm
performs for different skin tones. Figure 2, and Figure 3 shows the absolute error in milliseconds for SDNNhrv,
and SDSDhrv parameters respectively, calculated from iPPG signals acquired from skin tone dataset.

The DistancePPG-Peak detection method gives erroneous values for darker skin tones as simple peak detection
method is vulnerable to noisy peaks, and motion artifacts. Although the peak detection algorithm rejected some
spurious peaks, DistancePPG-Peak performs poorly, especially for dark skin tone subjects. It presented a mean
absolute error of 19 ms, and root mean square error of 33 ms for SDNNhrv.

The DistancePPG-CWT method presented a mean absolute error of 12 ms, and root mean square error of 17
ms for SDNNhrv. The continuous wavelet filtering method attenuated the power in the sidebands around the
main heart rate frequency. As the HRV information was present in the sidebands, in some cases this attenuation
led to the suppression of the high frequency component of HRV. Thus, the standard deviation of HRV is found
to be lower than the actual value.

The mean absolute error, and root mean square error for SDNNhrv calculated by CameraHRV method is 5
ms, and 7 ms respectively which is less compared to other methods.

As the standard deviation of successive differences of HRV SDSDhrv is a more sensitive parameter, all the
three algorithms presented a larger error. CameraHRV provided a mean absolute error of 8 ms, and root mean
square error 10 ms compared to DistancePPG-CWT which had an error of 24 ms, 35 ms, and DistancePPG-Peak
39 ms, 64 ms respectively.
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Figure 2. Absolute Error in standard deviation of inter-beat intervals (SDNNhrv) from iPPG (two videos of each of the 9
subject) of different skin tones. Error is obtained by comparing with SDNNhrv from pulse oximeter PPG. CameraHRV
reduces the error in Standard deviation of HRV below 10 ms for most skin tones.

.

Figure 3. Absolute Error in standard deviation of successive differences in inter-beat intervals ( SDSDhrv) from iPPG
(two videos of each of the 9 subject) of different skin tones. Error is obtained by comparing with SDSDhrv from pulse
oximeter PPG. CameraHRV reduces error below 20 ms for most skin tones.
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Figure 4. Root mean square error in standard deviation of inter-beat intervals (SDNNhrv), and standard deviation of
successive differences in inter-beat intervals (SDSDhrv) calculated between iPPG signals for the motion dataset (12
videos comprising of subjects talking, watching or reading from 4 fair tone subjects), and ground truth pulse oximeter.
CameraHRV has a slightly better performance than the other methods.

3.4.2 Motion

The motion was another main contributor to noise in the iPPG signals. Figure 4 shows the root mean square
error in SDNNhrv, and SDSDhrv parameters.

The mean absolute error, and root mean square error for SDNNhrv in case of CameraHRV was 8 ms, 10 ms
respectively, DistancePPG-CWT was 9 ms, 14 ms respectively, and DistancePPG-Peak was 19 ms, and 28 ms
respectively. The mean absolute error, and root mean square error for SDSDhrv in case of CameraHRV was 11
ms, 18 ms respectively, DistancePPG-CWT was 17 ms, 28 ms respectively, and DistancePPG-Peak was 34 ms,
48 ms respectively.

The CameraHRV method gave less error than other two methods. The subjects were all of fair skin tone.
Thus, the error is largely due to motion artifacts while reading, watching, or talking. We combined all the motion
scenarios together as different subjects had a different amount of head motion for different activities.

We also tested the algorithm for motion videos with subjects of a dark skin tone. All the three algorithms
performed poorly for such videos. Although CameraHRV performed better in presence of motion compared to
other current methods, there is scope for improvement in the algorithm. The reason CameraHRV failed was that
the noise present in the sidebands overpowered the BR peak which led to incorrect filtering, and larger error in
HRV parameter values.

4. CONCLUSION AND FUTURE WORK

We present CameraHRV an algorithm for non-contact measurement of heart rate variability. We validated
our algorithm against the ground truth pulse oximeter for different skin tones, and motion scenarios. We also
compared the performance of CameraHRV to other algorithms which are currently used. We showed CameraHRV
performed significantly better than the standard algorithms for different skin tones with low motion scenario, and
slightly better in case of high motion scenarios. It has a mean absolute error of 5 ms, and 8 ms for SDNNhrv,
and SDSDhrv respectively when tested for different skin tones. In case of motion, it presents a mean absolute
error of 8 ms, 11 ms respectively. There is a need to improve the performance of CameraHRV in case of motion
scenarios. Future work may include developing an iPPG signal estimator aimed at attaining a higher accuracy in
HRV parameters. A better technique for reducing noise in the phase of the iPPG signal may also be investigated.
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