Learning from Sensor Data: Set I

Behnaam Aazhang
J.S. Abercombie Professor
Electrical and Computer Engineering
Rice University
Course Outline

• 1. Preliminaries

• 2. A probabilistic approach (books by Hajek and Mackay)
 • Statistical characteristics of data
 • Statistical analysis of the performance

• 3. Data (book by Hajek)
 • Continuous time
 • Discrete time
4. Frameworks for learning from data (MacKay)

- Parametric models
- Non-parametric—data driven
5. Estimating key statistical metrics from data (Bishop 2.4, 2.5)

- Estimating probability mass function
- Density estimation
 - Plugin estimators
 - Kernel density estimation (KDE)
 - K nearest neighbor (k-NN)
Set II

• 6. Data representation (Bishop 8)
 • Graphical modeling
 • Directed graphs
 • Bayesian network
 • Undirected graphs
 • Markov random fields
 • Factor graphs
1. Preliminaries

• Engineering is all about designing a system with constraints
 • or more often, “improving” the functionality of a physical system within some practical constraints

• The system could be anything from a bridge to the space station to the world wide web

• Examples of physical systems could be our environment, a biological system, or a factory

• The constraints could be the form factor, the cost, power, time, among others
• Engineers use fundamental tools like mathematics, physics, chemistry, and economics

• For years their starting point has been building a model

 • Model of the system

 • Model of the constraints

• The impact of their work has been limited by the accuracy of their model

• The model is often also used to evaluate the performance
• Despite possible limitations of models we have thousands of engineering marbles

 • Golden gate bridge

 • World wide web

 • Cellular LTE

 • Robots

 • …
• “Essentially all models are wrong but some are useful” G. Box (1987)

• A move from model based engineering to data based engineering

• Can we engineer based on data?

• A precursor is “inference” where we try to find the most appropriate explanation for data
Over the last decade there has been a data deluge

- Incredible connectivity
- Cheap storage and computational machines
- Availability of sensors

There are many positives and negatives to the explosion of data

- Let’s only focus on the positives
• Learning from data

 • A probabilist approach

 • Data could be noisy

 • Model could have inherent uncertainty

 • Insufficient size of data set

 • A probabilistic inference may be desirable

 • Example: 80% chance of rain
2. A probabilistic approach

- Input space = feature space = signal domain \(\mathcal{X} \)
- Output space = response space = signal range \(\mathcal{Y} \)
- Examples:
 - Classification
 \[\mathcal{X} = \mathbb{R}^d \text{ and } \mathcal{Y} = \{0, 1\} \]
 - Estimation
 \[\mathcal{X} = \mathbb{R} \text{ and } \mathcal{Y} = \mathbb{R} \text{ where } Y = g(X) + Z \]
• In many systems and problems, input (data) denoted as X and output by Y

• Assume a joint distribution of (X, Y) as $F_{X,Y}$

 • Cumulative distribution function (CDF) and joint CDF

 $$F_X(a) = P\{X \leq a\} \text{ and } F_{X,Y}(a,b) = P\{X \leq a \text{ and } Y \leq b\}$$

• Probability density function (PDF) and joint PDF if variables are continuous valued

 $$F_X(a) = \int_{-\infty}^{a} f_X(x)dx$$
 $$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y)dxdy$$
• For discrete data we define probability mass function (PMF)

\[F_X(a) = \sum_{x_i \leq a} p_X(x_i) \text{ where } p_X(x_i) = P(X = x_i) \]

• Joint probability mass function

\[F_{X,Y}(a, b) = \sum_{x_i \leq a} \sum_{y_j \leq b} p_{X,Y}(x_i, y_j) \text{ where } p_{X,Y}(x_i, y_j) = P(X = x_i, Y = y_j) \]
• Conditional distribution and conditional probability mass function

\[
F_{Y\mid X}(b\mid x_i) = \sum_{y_j \leq b} p_{Y\mid X}(y_j \mid x_i)
\]

• If \(X \) and \(Y \) are jointly discrete

\[
p_{Y\mid X}(y_j \mid x_i) = \frac{p_{X,Y}(x_i, y_j)}{p_X(x_i)}
\]
• Conditional distribution and conditional density

\[F_{Y|X}(y|x) \text{ and } F_{Y|X}(b|x) = \int_{-\infty}^{b} f_{Y|X}(y|x) \, dy \]

• If \(X \) and \(Y \) are jointly continuous then

\[f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} \]
• The expectation operator

\[E[g(X)] = \int_{\mathbb{R}} g(x) dF_X = \int_{\mathbb{R}} g(x) f_X \, dx \]

\[E[g(Y)|X] = \int_{\mathbb{R}} g(y) dF_Y|X = \int_{\mathbb{R}} g(y) f_Y|X \, dy \]

\[E[g(X,Y)] = \int_{\mathbb{R}^2} g(x,y) dF_{X,Y} = \int_{\mathbb{R}^2} g(x,y) f_{X,Y} \, dx \, dy \]

• Similarly if \(X \) is discrete

\[E[g(X)] = \int_{\mathbb{R}} g(x) dF_X = \sum_{i} g(x_i) p_X(x_i) \]
• X and Y are independent if

$$F_{X,Y}(a, b) = F_X(a)F_Y(b) \forall a \text{ and } b$$

or

$$f_{X,Y}(x, y) = f_X(x)f_Y(y) \forall x \text{ and } y$$

• Correlation between X and Y

$$R_{X,Y} = E[XY^*] \text{ and } C_{X,Y} = E[XY^*] - E[X]E[Y]^*$$

• Mutual information between X and Y

$$I(X; Y) = \int_{\mathbb{R}^2} f_{X,Y} \log\left(\frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)}\right) dx dy$$
• X and Y are independent if

$$F_{X,Y}(a, b) = F_X(a)F_Y(b) \forall a \text{ and } b$$

or

$$p_{X,Y}(x_i, y_j) = p_X(x_i)p_Y(y_j) \forall i \text{ and } j$$

• Correlation between X and Y

$$R_{X,Y} = E[XY^*] \text{ and } C_{X,Y} = E[XY^*] - E[X]E[Y]^*$$

• Mutual information between X and Y

$$I(X; Y) = \sum_{i,j} p_{X,Y}(x_i, y_j) \log \frac{p_{X,Y}(x_i, y_j)}{p_X(x_i)p_Y(y_j)}$$
• Correlation coefficients

\[-1 \leq \rho_{X,Y} = \frac{C_{X,Y}}{\sqrt{\text{Var}(X)\text{Var}(Y)}} \leq 1\]

• Mutual information

\[0 \leq I(X;Y)\]

• All these measure relationship among variables

 • Correlation, independence, and mutual information
Example 2.1: If X and Y are independent

Then $C_{X,Y} = 0$ and $I(X;Y) = 0$

If X is zero mean and has a symmetric density and Y is squared X then

- Are X and Y independent?
- Are they uncorrelated?
- Is their mutual information zero?
• Mutual information seems to be a powerful metric of dependency

• The origin of mutual information dates back to late 1940s.

• It is based on the concept of entropy from thermodynamics and statistical mechanics from mid 1800s.
• We can define a triple probability space to describe uncertainty of our system

\((\Omega, \mathcal{F}, P)\)

• The outcome of the experiment \(w \in \Omega\)

• The universal set of possible outcomes \(\Omega\)

• A relevant event \(A\) as a collection of outcomes of interest \(w \in A\)

• The probability of an event \(P(A)\)

• A random variable \(X : (\Omega, \mathcal{F}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))\)
• Information content of an event \(- \log_2(P(A))\) where \(A \in \mathcal{F}\)

• Average information content of a discrete random variable

\[
H(X) = - \sum_i p_X(x_i) \log p_X(x_i)
\]

• It is the entropy

\[
H(X) \geq 0
\]

• Differential entropy of a continuous random variable

\[
h(X) = - \int_x f_X(x) \log f_X(x) dx
\]
• Differential entropy can be negative.

• It is best used comparing $h(X)$ and $h(Y)$, hence the concept of differential

• An alternative, formulation

\[
I(X; Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)
\]

\[
I(X; Y) = h(Y) - h(Y|X) = h(X) - h(X|Y)
\]

• Yet another formulation based on a distance measure
• The “distance” between two probability measures (PDF or PMF)

• Kullback-Leibler distance

\[
D_{KL}(f_X \| g_X) = \int_x f_X(x) \log \frac{f_X(x)}{g_X(x)} dx
\]

\[
D_{KL}(f \| g) \geq 0
\]

\[
I(X; Y) = D_{KL}(f_{X,Y} \| f_X f_Y)
\]
• Recall inference is a critical outcome of many problems in data analysis

• In all inference problems, we have an objective, therefore, we have loss and risk
• Loss function

\[\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \]

• Examples are

if \(\mathcal{Y} = \{0, 1\} \) then \(\ell(y, \hat{y}) = 1 \) if \(y \neq \hat{y} \)

if \(\mathcal{Y} = \mathbb{R} \) then \(\ell(y, \hat{y}) = (y - \hat{y})^2 \) or \(E(Y - \hat{Y})^2 \)
- Risk of inference

- Finding the output corresponding an input

\[g : \mathcal{X} \rightarrow \mathcal{Y} \]

- The performance of a given mapping

\[R(g) = E[\ell(Y, g(X))] \]

- The optimum mapping

\[R^* = \inf_g R(g) = \inf_g E[\ell(Y, g(X))] \]
• Example 2.2

• The connection between estimation and information theory

• Assume data \(\mathbf{X} = (X_1, X_2, \ldots, X_n) \)

 • Data is assumed independent and identically distributed with probability mass function \(p_{X_i}(x) \)

• The objective:

 • Find a distribution for the data that maximizes the likelihood of the data
• Find the probability mass function that generated the data, that is,

\[p_{X_i} \text{ for observed } (x_1, x_2, \ldots, x_n) \]

• Can data provide a mechanism to find the underlying distribution that generated the data?

• Find the model among the set of possible models that maximizes the likelihood of generating the data.
The maximum likelihood estimate of the probability among a set is

\[\arg\max_{q \in \mathcal{Q}} q_x(x) = \arg\max_{q \in \mathcal{Q}} \log q_x(x) = \arg\min_{q \in \mathcal{Q}} -\log q_x(x) \]

q is a possible probability mass function that could have generated the data

- q is the probability that $x = 0$

An appropriate loss function could be the negative log loss
• The loss function

\[\ell(y, \hat{y}) = \ell(q, X) = -\log q_X \]

• The risk

\[R(q) = E[\ell(y, \hat{y})] = E_p[\ell(q, X)] = -E_p[\log q_X] \]
\[= D_{KL}(p || q) + E_p[\ell(p, X)] \]
\[= D_{KL}(p || q) + R(p) \]

• The risk is minimized with \(q = p \)

• The minimum risk is

\[R^* = E_p[\ell(p, X)] = H(p) \]
A specific case is binary independent identically distributed sequence of data

\[\mathbf{X} = (X_1, X_2, \ldots, X_n)^\top \text{ with } X_i \in \{0, 1\} \]

• Ground truth

\[p_{\mathbf{X}}(\mathbf{x}) = \left[p_{X_i}(x_i) \right]^n \]

• Find a distribution for the data that maximizes the likelihood of the data

\[\mathbf{x} = (0, 1, 0, 0, 0, 1) \]

• Since the data samples are independent

\[\arg \max_{q \in \mathcal{Q}} q_{\mathbf{X}}(\mathbf{x}) = \arg \max_{q \in \mathcal{Q}} \prod_{i=1}^{n} q_{X_i}(x_i) \]
• Since data are binary

\[
\arg \max_{q \in Q} q^x(x) = \arg \max_{q \in [0,1]} q^l(1 - q)^{(n-l)}
\]

• The maximum likelihood estimate of the probability \(q \) is derived

\[
\frac{d}{dq} \left(q^l (1 - q)^{(n-l)} \right) = 0
\]

• The most likely probability is \(q^* = \frac{l}{n} \)
• In the specific case of $\mathbf{x} = (0, 1, 0, 0, 0, 1)$

• The ML estimate is $q^* = \frac{2}{3}$

• Obviously the ground truth is not known.
3. Data

- Temporal observations X_1, X_2, \ldots, X_n
- Temporal relationships R_{X_i, X_j}
- Spatial observations $X^{(1)}, X^{(2)}, \ldots, X^{(d)}$
- Spatial relationships $R_{X^{(k)}, X^{(l)}}$
• 3 illustrative examples of data
Intracardiac Electrogram Recordings – Catheter Placement
• High right atrial

• His* bundle

• Coronary sinus

• Right ventricle apex

* William His, Junior, a Swiss cardiologist, 1893
• A very different example,

• Voltage sensitive dye
Fig. 8. Analyzing VSD recording data using DI.

A: The VSD imaging surface of the caudal surface of the left buccal hemiganglion and the kernel markup of the recording surface.

B: Raster plot of a 2 min VSD recording from the ganglion.

C: The adjacency matrix of the network obtained from DI analysis. Many putative connections were detected.

1d has both an excitatory and an inhibitory synaptic connection and occur frequently. There are several neurons within the feeding CPG with the capability of projecting both excitatory and inhibitory synaptic connections (eg. B4 and B71) (Gardner, 1977; Sasaki et al., 2013). Again, we would expect motifs 1c-d and 1f-g to occur with the same frequency if the detected connections occurred by chance. However,
• Often recorded data are continuous time signals

\[X_t^{(1)}(w), X_t^{(2)}(w), \ldots, X_t^{(d)}(w) \forall t \text{ and } w \in \Omega \]

• where \(w \) is an outcome of the random experiment and \(\Omega \) is the set of all outcomes

• Discrete time data is often much more desirable

 • It can be stored

 • It is easy to analyze and process with digital filters
• Continuous time signals can be represented with discrete time data

• With no loss of information

\[X_t(w) \forall t \rightarrow X_1(w), X_2(w), \ldots, X_n(w) \]

• Sampling

• Projection
• Sampling and reconstruction

\[
X_t(w) = \sum_{n=-\infty}^{+\infty} X_{nT}(w) \frac{\sin(W[t - nT])}{W(t - nT)}
\]

• Where \(W \) is the bandwidth of the power spectral density and \(T = \frac{\pi}{W} \)

• The power spectral density of the process is \(S_X(f) = \mathcal{F}\{R_X(\tau)\} \)

• The autocorrelation is \(R_X(\tau) = E\{X_{t+\tau} X_t^*\} \)

• The data signal is assumed to be wide sense stationary (wss)
Example 3.1: Assume that the process is ideally band limited, that is,

\[S_X(f) = \begin{cases} \frac{N_0}{2} & \text{if } f \in [-W, W], \\ 0 & \text{otherwise} \end{cases} \]

In this example,

\[R_X(\tau) = \frac{N_0}{2T} \frac{\sin(W\tau)}{W\tau} \]

Where \(T = \frac{\pi}{W} \)

And \(E[X_{nT}X_{mT}^*] = 0 \) if \(m \neq n \)
• If the data signal is wide sense stationary

• That is,

\[R_X(\tau) = E\{X_{t+\tau}X^*_t\} \forall \tau \text{ not a function of } t \]

• The discrete samples carry all the information in the data signal

\[\ldots, X_{-T}, X_0, X_T, X_{2T}, \ldots, X_{nT} \]

• Since we have

\[X_t(w) = \sum_{n=-\infty}^{+\infty} X_{nT}(w) \frac{\sin(W[t - nT])}{W(t - nT)} \]
• The discrete samples carry all the information in the data signal

\[\cdots, X_{-T}, X_0, X_T, X_{2T}, \ldots, X_{nT} \]

• These samples will be uncorrelated (independent if the signal is Gaussian) if the spectrum is ideally band-limited.

• No need to carry the sampling period in the notation

\[\mathbf{X} = (X_1, X_2, \ldots, X_n)^\top \]
• In general, for band limited processes, the samples are correlated.

• The samples can be made uncorrelated using whitening linear filters.

• Define zero mean process \(\mathbf{X} = (X_1, X_2, \ldots, X_n)^\top \)

• The \(n \times n \) covariance matrix \(\Sigma_X = E[\mathbf{X}\mathbf{X}^\top] \)

• It is square
 - non-negative definite

• Hermitian matrix
• The covariance matrix \(\Sigma_X = E[XX^\top] \)

• If the covariance matrix is positive definite

• Linear transformation \(Y = AX \)

• The matrix \(A \) could be an \(m \times n \) matrix and \(Y \) will then be \(m \times 1 \)

• Then, the \(m \times m \) covariance matrix of \(Y \) is \(\Sigma_Y = A \Sigma_X A^\top \)

• If \(\Sigma_X = CC^\top \) then \(Y = C^{-1}X \) has \(\Sigma_Y = I \)
Example 3.2

\[\Sigma_Y = A \Sigma_X A^\top \]

\[\Sigma_X = CC^\top \] then \(Y = C^{-1}X \) has \(\Sigma_Y = I \)

\[
\begin{pmatrix}
4 & 12 & -16 \\
12 & 37 & -43 \\
-16 & -43 & 98
\end{pmatrix}
= \begin{pmatrix}
2 & 0 & 0 \\
6 & 1 & 0 \\
-8 & 5 & 3
\end{pmatrix}
\begin{pmatrix}
2 & 6 & -8 \\
0 & 1 & 5 \\
0 & 0 & 3
\end{pmatrix}
\]

\[
Y = \begin{bmatrix}
1/2 & 0 & 0 \\
-3 & 1 & 0 \\
19/3 & -5/3 & 1/3
\end{bmatrix} X
\]
• Example 3.3
• Example 3.3

• One interpretation

 • Different elements of the original data are correlated

 • if one element is 1.2 it is very likely that the other element is close to 1.

 • When data is whitened, then in the processed data, if one element is 1.2 the other one is still widely distributed

 • Still no information is lost
• Sampling “would not work” when the random signal is not wide sense stationary

• Even if wss, the samples could be, often are, correlated

• Karhunen-Loeve expansion of a more general random signal

\[R_X(t, s) = E[X_tX_s^*] \]

• The autocorrelation

\[\int_{-\infty}^{+\infty} R_X(t, s)\alpha_n(s)ds = \lambda_n\alpha_n(t) \forall t \]

• Eigenfunctions of the autocorrelation function
• Example 3.4

• A concept analogous to eigenvectors of a matrix

\[A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

\[A\mathbf{x} = \lambda \mathbf{x} \]

\[\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x}_1 = \lambda_1 \mathbf{x}_1 \text{ and } \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x}_2 = \lambda_2 \mathbf{x}_2 \]

\[\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda_1 = 3 \text{ and } \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \lambda_2 = 1 \]

• The eigenvectors are orthogonal since \(A \) is a symmetric matrix

\[\langle \mathbf{x}_1, \mathbf{x}_2 \rangle = 0 \]
Analogous to eigenvectors, eigenfunctions are also orthogonal.

\[\int_{-\infty}^{+\infty} \alpha_n(t) \alpha_m^*(t) dt = \lambda_n \delta_{n,m} \]

\[\delta_{n,m} = \begin{cases}
1 & \text{if } n = m, \\
0 & \text{otherwise}
\end{cases} \]

It is intuitive to expect that the projection of the data signal on these eigenfunctions would be orthogonal and uncorrelated if the random process was zero mean.
• Then, we can write

\[X_t(w) = \sum_{n=0}^{+\infty} \alpha_n(t) Z_n(w) \]

• Where \(E[Z_n Z_m^*] = \delta_{n,m} \)

\[Z_n(w) = \lambda_n^{-1} \int_{-\infty}^{+\infty} X_t(w) \alpha_n^*(t) dt \]

\[\alpha_n(t) = E[X_t Z_n^*] \quad \forall t \]

\[\int_{-\infty}^{+\infty} \alpha_n(t) \alpha_m^*(t) dt = \lambda_n \delta_{n,m} \]
• Where
\[\delta_{n,m} = \begin{cases} 1 & \text{if } n = m, \\ 0 & \text{otherwise} \end{cases} \]

• The information is represented in \(Z_0(w), Z_1(w), \ldots, Z_n(w), \ldots \)

• The structure is represented in \(\alpha_0(t), \alpha_1(t), \ldots, \alpha_n(t), \ldots \)

• All because we have
\[X_t(w) = \sum_{n=0}^{+\infty} \alpha_n(t) Z_n(w) \]
• Similar to sampling

\[X_t(w) = \sum_{n=-\infty}^{+\infty} X_{nT}(w) \frac{\sin(W[t - nT])}{W(t - nT)} \]

• where samples carry all the information

\[X_t(w), \ldots, X_{-T}, X_0, X_T, X_{2T}, \ldots, X_{nT}, \ldots \]
• Projections on eigenfunctions carry all the information

\[Z_0, Z_1, Z_2, \ldots, Z_n, \ldots \]
• Assume that the data is discrete time stochastic process

 • Parametric models with a few parameters

 • Gaussian, linear, Poisson, ...

 • Data driven—“model free”

• Discrete valued time series

• Continuous valued time series
• Assume the data is

\[X_1^n = (X_1, X_2, \ldots, X_n) \text{ where } X_i \in \mathbb{R} \]

• Then the mutual information between two time series \(X_1^n \) and \(Y_1^n \)

• The dependency of one set of data with another
• Example 3.5

• Two small sets of data and their dependency

\[I(X_1, X_2; Y_1, Y_2) = I(X_1, X_2; Y_1) + I(X_1, X_2; Y_2|Y_1) \]

• Where

\[I(X_1, X_2; Y_1) = I(X_1; Y_1) + I(X_2; Y_1|X_1) \]

• Recall that

\[I(X_1; Y_1) = h(X_1) - h(X_1|Y_1) = h(Y_1) - h(Y_1|X_1) \]
Example 3.6

• Lets start with dependencies between two single random variables X and Y.
Example 3.6

Assume X and Z are each a Gaussian random variable and independent

The model $Y = X + Z$, that is, Y is a noisy but direct observation of X

$$I(X; Y) = h(Y) - h(Y | X)$$
• Example 3.6

• Assume X and Z are each a Gaussian random variable and independent

• The model $Y = X + Z$, that is, Y is a noisy but direct observation of X

$$I(X; Y) = h(Y) - h(Y|X)$$
• Example 3.6

• Assume X and Z are each a Gaussian random variable and independent

• The model $Y = X + Z$, that is, Y is a noisy but direct observation of X

$$I(X; Y) = h(Y) - h(Y|X)$$
• Note that both X and Z are Gaussian and that $h(Y|X) = h(Z)$

$$h(X) = - \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-x^2/2\sigma_X^2} \log \left(\frac{1}{\sqrt{2\pi\sigma_X^2}} e^{-x^2/2\sigma_X^2} \right) dx$$

$$I(X;Y) = h(Y) - h(Y|X)$$
Note that both X and Z are Gaussian and that $h(Y|X) = h(Z)$.

$$h(X) = -E_X \left[\log \frac{1}{\sqrt{2\pi\sigma_X^2}} + \log e^{-X^2/2\sigma_X^2} \right]$$

$$I(X; Y) = h(Y) - h(Y|X)$$
\[h(Y|X) = h(Z) \]

\[h(X) = \frac{1}{2} \log 2\pi\sigma_X^2 + \frac{E[X^2]}{2\sigma^2} \log e = \frac{1}{2} \left[\log 2\pi\sigma_X^2 + \log e \right] \]

\[I(X; Y) = h(Y) - h(Y|X) \]
Note that both X and Z are Gaussian and that $h(Y|X) = h(Z)$.

\[
\begin{align*}
 h(Y) &= \frac{1}{2} \log 2\pi e^{\frac{1}{2} \sigma_Y^2 + \sigma_Z^2} \\
 h(Y|X) &= \frac{1}{2} \log 2\pi e^{\frac{1}{2} \sigma_Z^2} \\
 I(X;Y) &= \frac{1}{2} \log \left(1 + \frac{\sigma_X^2}{\sigma_Y^2} \right) \\
 I(X;Y) &= h(Y) - h(Y|X)
\end{align*}
\]
For comparison, let’s examine the correlation between X and Y.

$$R_{X,Y}?$$
• For comparison, let’s examine the correlation between X and Y.

• Recall

$$R_{X,Y} = E[XY^*] \text{ and } C_{X,Y} = E[XY^*] - E[X]E[Y]^*$$

• In this example,

$$R_{X,Y} = E[XY^*] = E[X(X + Z)^*] = E[X(X + Z)] = \sigma_X^2$$

• Compared to,

$$I(X; Y) = \frac{1}{2} \log \left(1 + \frac{\sigma_X^2}{\sigma_Z^2} \right)$$
• Back to time series

\[X_1^n = (X_1, X_2, \ldots, X_n) \text{ where } X_i \in \mathcal{R} \]

• Then the mutual information between two time series \(X_1^n \) and \(Y_1^n \)

\[I(X_1^n; Y_1^n) = \sum_{i=1}^{n} I(X_1^n; Y_i | Y_1^{i-1}) \]

\[= I(X_1^n; Y_1) + I(X_1^n; Y_2 | Y_1) + I(X_1^n; Y_3 | Y_1^2) + \ldots \]

• Also

\[I(X_1^n; Y_1^n) = h(Y_1^n) - h(Y_1^n | X_1^n) \]
• Mutual information of two time series measure general “dependence” of the two time series as a whole

 • No temporal information, no influence, nor causality

• It is often critical to measure causality.

 • One data forecasting or influencing another

 • Stock market

 • Transportation

 • Economics
• In this example it is easy to guess that X causes Y
• In this example it is not easy
Price of Arabica
Granger causes
price of Robusta
• Grainger causality

• If signal X causes signal Y then passed values of X should contain information that helps predict Y above and beyond the information contained in past values of Y alone

• Granger is defined based on a linear model assumption where Z is noise

\begin{align*}
Y_{k+1} &= a_0 Y_k + a_1 Y_{k-1} + \ldots + b_0 X_k + b_1 X_{k-1} + \ldots + Z_k \\
X_{k+1} &= c_0 X_k + c_1 X_{k-1} + \ldots + d_0 Y_k + d_1 Y_{k-1} + \ldots + Z'_k
\end{align*}
• Example 3.7

• If the relationship were based on a linear autoregressive model

\[X_{k+1} = 0.3X_k + Z'_k \]

\[Y_{k+1} = 0.1Y_k + 0.2X_k + Z_k \]

• Does \(X \) cause \(Y \) or does \(Y \) cause \(X \)?

• Past and current values of \(X \) can help better predict the future values of \(Y \)
Testing hypotheses

- If the coefficients, b’s, are zero then X does not Granger cause Y
- If the coefficients, d’s, are zero then Y does not Granger cause X
- Granger causality quantifies the impact of coefficients b’s and d’s.
• Test the hypothesis that setting b’s to zero increases the residual variance of estimating

$$C_G(X \rightarrow Y) = \log \frac{\sigma^2_{\hat{Y}}(0)}{\sigma^2_{\hat{Y}}(b)}$$

$$C_G(Y \rightarrow X) = \log \frac{\sigma^2_{\hat{X}}(0)}{\sigma^2_{\hat{X}}(d)}$$
• Shortcomings of Granger casualty

 • The data is assumed to be linearly dependent in time.

 • Autoregressive

 • The two data sets are assumed to be linearly dependent

 • The data sets are assumed to be Gaussian

 • Stationarity is assumed

 • The impact of using Granger on non-stationary data is not known
• Recall that mutual information does not capture temporal information

\[
I(X_1^n; Y_1^n) = \sum_{i=1}^{n} I(X_1^n; Y_i | Y_1^{i-1})
\]

\[
= I(X_1^n; Y_1) + I(X_1^n; Y_2 | Y_1) + I(X_1^n; Y_3 | Y_1^2) + \ldots
\]

• A careful adjustment

\[
I(X_1^n \rightarrow Y_1^n) = \sum_{i=1}^{n} I(X_1^i; Y_i | Y_1^{i-1})
\]

\[
= I(X_1; Y_1) + I(X_1^2; Y_2 | Y_1) + I(X_1^3; Y_3 | Y_1^2) + \ldots
\]
• Directed information is a measure of causality in relation between X and Y

• It is a universal quantity measuring

 • influence

 • predictability

 • information flow
• Example 3.8

\[Y_n = X_n + Z_n \]

• with i.i.d.

\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]

\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]
with i.i.d. ~

\[Y_n = X_n + Z_n \]

- independent

\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]

\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]
\[
X_n \sim \text{Gaussian}(0, \sigma_X^2)
\]

\[
Z_n \sim \text{Gaussian}(0, \sigma_Z^2)
\]

\[
Y_n = X_n + Z_n
\]

\[
I(X_1^n \rightarrow Y_1^n) = \sum_{i=1}^{n} I(X_1^i; Y_i|Y_1^{i-1})
\]

\[
= I(X_1; Y_1) + I(X_1^2; Y_2|Y_1) + I(X_1^3; Y_3|Y_1^2) + \ldots
\]

\[
= I(X_1; Y_1) + I(X_1; Y_2|Y_1) + I(X_2; Y_2|Y_1, X_1) + \ldots
\]

\[
= \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + 0 + \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + \ldots
\]

\[
= \frac{n}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2})
\]
\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]

\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]

\[Y_n = X_n + Z_n \]

\[I(X^n_1 \rightarrow Y^n_1) = \sum_{i=1}^{n} I(X^i_1; Y_i | Y^{i-1}_1) \]

\[= I(X_1; Y_1) + I(X^2_1; Y_2 | Y_1) + I(X^3_1; Y_3 | Y^2_1) + \ldots \]

\[= I(X_1; Y_1) + I(X_1; Y_2 | Y_1) + I(X_2; Y_2 | Y_1, X_1) + \ldots \]

\[= \frac{1}{2} \log\left(1 + \frac{\sigma_X^2}{\sigma_Z^2}\right) + 0 + \frac{1}{2} \log\left(1 + \frac{\sigma_X^2}{\sigma_Z^2}\right) + \ldots \]

\[= \frac{n}{2} \log\left(1 + \frac{\sigma_X^2}{\sigma_Z^2}\right) \]
• The normalized, per time, mutual information and directed information

\[Y_n = X_n + Z_n \]

\[I(X \rightarrow Y) = I(Y \rightarrow X) = I(X; Y) = \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) \]
Example 3.9

\[Y_n = X_{n-1} + Z_n \]

With i.i.d.

\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]

\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]
\[Y_n = X_{n-1} + Z_n \]

- With i.i.d.

\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]

\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]
\[Y_n = X_{n-1} + Z_n \]

\[
\begin{align*}
I(\dot{X}_1^n \to Y_1^n) &= \sum_{i=1}^{n} I(X_1^i; Y_i | Y_1^{i-1}) \\
&= I(X_1; Y_1) + I(X_1^2; Y_2 | Y_1) + I(X_1^3; Y_3 | Y_1^2) + \ldots \\
&= I(X_1; Y_1) + I(X_1; Y_2 | Y_1) + I(X_2; Y_2 | Y_1, X_1) + \ldots \\
&= 0 + \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + 0 + \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + \ldots \\
&= \frac{n}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2})
\end{align*}
\]
\(X_n \sim \text{Gaussian}(0, \sigma_X^2) \)

\(Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \)

\[
Y_n = X_{n-1} + Z_n
\]

\[
I(\hat{X}_1^n \to Y_1^n) = \sum_{i=1}^{n} I(X_i^i; Y_i|Y_i^{i-1})
\]

\[
= I(X_1; Y_1) + I(X_1^2; Y_2|Y_1) + I(X_1^3; Y_3|Y_2^2) + \ldots
\]

\[
= I(X_1; Y_1) + I(X_1; Y_2|Y_1) + I(X_2; Y_2|Y_1, X_1) + \ldots
\]

\[
= 0 + \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + 0 + \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) + \ldots
\]

\[
= \frac{n}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2})
\]
\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]
\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]

\[Y_n = X_{n-1} + Z_n \]

\[I(Y_1^n \rightarrow X_1^n) = \sum_{i=1}^{n} I(Y_i^i; X_i|X_i^{i-1}) \]

\[= I(Y_1; X_1) + I(Y_1^2; X_2|X_1) + I(Y_1^3; X_3|X_1^2) + \ldots \]
\[= I(Y_1; X_1) + I(Y_1; X_2|X_1) + I(Y_2; X_2|X_1, Y_1) + \ldots \]
\[= 0 + 0 + \ldots \]
\[Y_n = X_{n-1} + Z_n \]

\[
I(Y_1^n \rightarrow X_1^n) = \sum_{i=1}^{n} I(Y_i^i; X_i|X_i^{i-1})
\]

\[= I(Y_1; X_1) + I(Y_1^2; X_2|X_1) + I(Y_1^3; X_3|X_1^2) + \ldots \]

\[= I(Y_1; X_1) + I(Y_1; X_2|X_1) + I(Y_2; X_2|X_1, Y_1) + \ldots \]

\[= 0 + 0 + \ldots \]
\[X_n \sim \text{Gaussian}(0, \sigma_X^2) \]
\[Z_n \sim \text{Gaussian}(0, \sigma_Z^2) \]

- Recall

\[Y_n = X_{n-1} + Z_n \]

- then

\[I(X \rightarrow Y) = \frac{1}{2} \log(1 + \frac{\sigma_X^2}{\sigma_Z^2}) \]
\[I(Y \rightarrow X) = 0 \]
• In these two examples Granger causality and directed information result in similar measures

 • Since time series are

 • Linearly related

 • Gaussian

• It is not clear if Granger causality is the right metric in the coffee price example since the linearity model may or may not be valid.
A nonlinear model

\[Y_k = \beta_1 X_k^2 + \beta_2 X_{k-1}^2 + Z_k \]

where \(Z \) is Gaussian noise

Can \(X \) help predict \(Y \)?

Can \(Y \) help predict \(X \)?

How about in these cases?

\[Y_k = X_k^2 + Z_k \text{ or } Y_k = X_{k-1}^2 + Z_k \]
• A nonlinear model

\[Y_k = \beta_1 X_k^2 + \beta_2 X_{k-1}^2 + Z_k \]

• where \(Z \) is Gaussian noise

(b) \(\beta_2 = 1 - \beta_1 \)
• Directed information is a measure of causality in relation between X and Y

• It is a universal quantity measuring

 • Influence

 • Predictability

 • Information flow

• Another important metric of relation between time series
• Coherence

• Another concept measuring relationship between two data sets

• Consider two zero mean random vectors X and Y

• The cross correlation is defined as

$$R_{X,Y}(m, m') = E[X_m Y_{m'}^*]$$

• If the series are jointly wide sense stationary

$$R_{X,Y}(m, m') = R_{X,Y}(m - m')$$
• The cross power spectral density is defined as

\[S_{X,Y}(f) = \mathcal{F}\{R_{X,Y}(k)\} = \sum_{k=-\infty}^{\infty} R_{X,Y}(k)e^{j2\pi kf} \]

• Recall autocorrelation of a time series is

\[R_X(m, m') = E[X_mX_{m'}^*] \]

• If the times series is wide sense stationary then

\[R_X(m, m') = R_X(m - m') \]

• The power spectral density is

\[S_X(f) = \mathcal{F}\{R_X(k)\} = \sum_{k=-\infty}^{\infty} R_X(k)e^{j2\pi kf} \]
• The coherence at a given frequency between two time series is defined as

\[C_{X,Y}(f) = \frac{|S_{X,Y}(f)|^2}{S_X(f)S_Y(f)} \]

• The coherence estimates the extend that \(Y \) can be predicted by \(X \) using optimum linear estimator.

• It can be shown that \(0 \leq C_{X,Y}(f) \leq 1 \)

• If \(Y \) is a noiseless linear function of time series \(X \), i.e., \(Y = h * X \), what is the coherence between \(X \) and \(Y \)?
• If \(Y \) is a linear estimator of \(X \), then \(Y = h \ast X \) with no noise then

\[
S_{X,Y}(f) = H(f)S_X(f) \quad \text{and} \quad S_Y(f) = |H(f)|^2S_X(f)
\]

• And the coherence is 1.

• Any nonlinearity or noise in the system will reduce the coherence.

• Reduction in information or estimation accuracy due to nonlinearity or noise at a given frequency

\[
1 - C_{X,Y}(f)
\]
• Example 3.10

• A linear system where \(Y = h \ast X + Z \) where \(Z \) is noise

• The filter is a 33 tap bandpass filter between \([0.15, 0.35]\) normalized frequencies

• How effectively can \(X \) at frequency 2.5 be estimated from \(Y \)?

\[
|H(f)|^2
\]
Example 3.11

Two nonlinearly related signals, assume $f = 4$ Hz

$$X_i = A \cos(2\pi f i + \theta) \quad \forall i = 1, 2, \ldots, n$$

$$Y_i = X_i^2 + Z_i$$

Are X and Y coherent at frequency 4 Hz?
• Mutual information quantifies relationship between data sets

• Ignores relative timing and causality

• Ignores frequency content of the data

\[
I(X^n_1; Y^n_1) = \sum_{i=1}^{n} I(X^n_1; Y_i | Y_i^{i-1})
\]

\[
= I(X^n_1; Y_1) + I(X^n_1; Y_2 | Y_1) + I(X^n_1; Y_3 | Y_1^2) + \ldots
\]
In many scenarios the frequency content of the data is a critical element in the analysis or inference

- Data from music

- Auditory neurological data

- Neurological data in different frequency bands have different significances
 - Alpha, theta, beta, gamma, and high gamma bands
• Mutual information in frequency

\[MI_{X,Y}(f_i, f_j) = I(d\tilde{X}_{f_i}; d\tilde{Y}_{f_j}) \]

• That is, mutual information between Fourier transforms of the two time series

\[
X_i = \int_0^1 e^{j2\pi if} d\tilde{X}_f
\]

\[
Y_i = \int_0^1 e^{j2\pi if} d\tilde{Y}_f
\]

• Here \(i = 1, 2, \ldots, n \)
Note that mutual information can be computed for any data set with time as the index or frequency or space.

It has been shown that when X and Y have a linear relationship then

$$MI_{X,Y}(f, f) = I(d\tilde{X}_f; d\tilde{Y}_f) = -\log[1 - C_{X,Y}(f)]$$

$X_1^n = (X_1, X_2, \ldots, X_n)$ is the recoded data and \tilde{X}_f for $f \in [0, 1]$ is spectral representation of data.
• Note that coherence was defined for linear systems as

\[C_{X,Y}(f) = \frac{|S_{X,Y}(f)|^2}{S_X(f)S_Y(f)} \]

• Since it is related to mutual information in frequency it can be generalized to any data sets

\[MI_{X,Y}(f, f) = I(d\tilde{X}_f; d\tilde{Y}_f) = -\log[1 - C_{X,Y}(f)] \]
Note that for range of frequencies, similar to time periods, the mutual information in frequency is defined as

\[
MI_{X,Y}(f, f') = I(d\tilde{X}_{f_1}^{f_n}; d\tilde{Y}_{f_1'}^{f'_n})
\]
• Example 3.12

• A linear system where $Y = h \ast X + Z$ where Z is noise

• The filter is a 33 tap bandpass filter between $[0.15, 0.35]$ normalized frequencies

• The mutual information between X and Y
Example 3.13

Two nonlinearly related signals, assume \(f = 4 \) Hz

\[
X_i = A \cos(2\pi fi + \theta) \quad \forall i = 1, 2, \ldots, n
\]

\[
Y_i = X_i^2 + Z_i
\]
• Example 3.14

• An experiment with no known ground truth

• A visual task, one trial, one monkey, non-matched (rotated image)

Visual Task Learned by Rhesus Macaques

The analyses of this work focus on LFPs recorded from the activity of neurons in mid-level visual cortex (area V4) while two monkeys learned a simple image rotation task [2] as portrayed in Fig. 1. Rhesus macaques were presented with two stimuli, each displayed for 300 ms with a 1 s blank period in between. The first stimulus was a gray scale circular image of a natural scene, while the second was a potentially rotated (up to 20°) version of the first. Monkeys then decided if image orientations were a match or non-match, and received a juice reward for responding correctly within 1.5 s after the offset of the second image. Therefore, each trial was approximately 3.6 s in total. For each day, the image shown in each trial was the same, however different images could be shown across days. Accordingly, learning days were the days where the monkey was presented with novel imagery.

Visual Matching Task Time Structure

<table>
<thead>
<tr>
<th>Time</th>
<th>FIXATION</th>
<th>TARGET IMAGE</th>
<th>...</th>
<th>TEST IMAGE</th>
<th>DECISION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rotated?

~3.6 seconds per trial
• Local field potential recordings from visual cortex about 500 trials

• Increase in Coherency between recorded time series

 • Theta band (3-8 Hz)

 • Matched trials

 • As the 2nd scene is processed
4. Frameworks for Learning from Data

- Parametric models
 - Accuracy of the model
 - Complexity of the model
 - Linear
 - Gaussian
 - Poisson
• Non-parametric, data driven, model free, universal, ...

• Issues
 • The size of the data
 • Relevance of the data
 • Overfitting

• Merits
 • Not limited by the model
• Generate sufficient amount of data

• to explore relevant features of the physical system

• to use the features to manipulate the system
5. Estimating Key Statistical Metrics from Data

• A critical step for
 • Model based
 • Data driven
 • Estimating correlation, dependencies, coherence, and other measures among recordings, i.e., time series
• Entropy of discrete valued random variables

\[H(X) = - \sum_i p_X(x_i) \log p_X(x_i) \]

• Estimating the entropy

• Plugin estimator

\[\hat{H}_n(X) = - \sum_{a=1}^A \hat{p}_a \log \hat{p}_a \text{ where } \hat{p}_a = \frac{\# \text{ occurrences of symbol } a}{n} \]

\[x_i \in \{1, 2, \ldots, A\} \]
• The random variables are assumed independent and identically distributed (i.i.d)

• It can be shown that

\[E\{[\hat{H}_n(X) - H(X)]^2\} = O\left(\frac{1}{n}\right) \]
Example 5.1

The binary random variables.

The random variables are assumed independent and identically distributed (i.i.d)

\[\hat{H}_n(X) = -\hat{p}_0 \log \hat{p}_0 - \hat{p}_1 \log \hat{p}_1 \]
• The binary random variables.

\[\hat{H}_n(X) = -\hat{p}_0 \log \hat{p}_0 - \hat{p}_1 \log \hat{p}_1 \]

\[
\hat{p}_0 = \frac{\text{# of occurrences of symbol 0}}{n} \\
\hat{p}_1 = \frac{\text{# of occurrences of symbol 1}}{n}
\]

• Example with

\[x = (0, 1, 0, 0, 0, 1) \]

\[\hat{H}_n(X) = \frac{2}{3} \log \frac{3}{2} + \frac{1}{3} \log 3 \]
Example 5.2
• Example 5.2
• Example 5.2

Fig. 8. Analyzing VSD recording data using DI.

A: The VSD imaging surface of the caudal surface of the left buccal hemiganglion and the kernel markup of the recording surface.

B: Raster plot of a 2 min VSD recording from the ganglion.

C: The adjacency matrix of the network obtained from DI analysis. Many putative connections were detected.

1d has both an excitatory and an inhibitory synaptic connection and occur frequently. There are several neurons within the feeding CPG with the capability of projecting both excitatory and inhibitory synaptic connections (e.g., B4 and B71) (Gardner, 1977; Sasaki et al., 2013). Again, we would expect motifs 1c-d and 1f-g to occur with the same frequency if the detected connections occurred by chance. However,
• What are the statistical properties of firing of each neuron?

• Are the spikes in different neurons related?

• Is one neuron’s spike excites another neuron to spike?

• Is one neuron’s spike inhibits another neuron from firing?

• What is the anatomical connectivity graph of these neurons?

• What is the functional connectivity graph of these neurons?
Fig. 9. Patterns of connectivity of the preparation in Fig. 8.

A: The inferred connectivity diagram.

B: All possible three-cell motifs containing 2–3 connections. Motifs that were present in the examples in Fig. 5-7 and were correctly identified are marked by asterisks. Motifs that were not detected by DI are indicated with a white background.

C: Indegrees and outdegrees of neurons. Neurons without any connections are not shown. This graph shows neurons that primarily receive connections on the left and those that send out connections on the right.

D: Number of occurrence for each motif. The labels correspond to the indice of the motifs in Panel B. Motifs that were not detected by DI are not shown.

Motifs 1c, 1f, and 1g were not detected. Motif 2d includes a neuron with a direct connection and a feedforward excitatory connection to a single neuron (network in Fig. 5A2). In a random network, we would expect 2c and 2d to occur with the same frequency however the 2c motif was not present. Motif 3g should receive special attention because it could possibly be an oscillator. These results indicate that there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal ganglion.
Fig. 9. Patterns of connectivity of the preparation in Fig. 8.

A: The inferred connectivity diagram.

B: All possible three-cell motifs containing 2 – 3 connections. Motifs that were present in the examples in Fig. 5-7 and were correctly identified are marked by asterisks. Motifs that were not detected by DI are indicated with a white background.

C: Indegrees and outdegrees of neurons. Neurons without any connections are not shown. This graph shows neurons that primarily receive connections on the left and those that send out connections on the right.

D: Number of occurrence for each motif. The labels correspond to the indice of the motifs in Panel B. Motifs that were not detected by DI are not shown.

Motifs 1c, 1f and 1g were not detected. Motif 2d includes a neuron with a direct connection and a feedforward excitatory connection to a single neuron (network in Fig. 5A2). In a random network, we would expect 2c and 2d to occur with the same frequency however the 2c motif was not present. Motif 3g should receive special attention because it could possibly be an oscillator. These results indicate that there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal ganglion.

Inhibitory
Motif 3g should receive special attention because it could possibly be an oscillator. These results indicate that there may be a preferred pattern of connectivity for the feeding CPG. These data indicate that the method will be fruitful for analyzing the general features of the functional connectivity of neurons in the buccal ganglion.

Inhibitory

Excitatory
• Neurons do not independently fire and their spike probabilities are not identically distributed

• The stimulus and the functionality is coded in the spike pattern of a population of neurons
• In many physical systems, the data symbols in time are not independent or identically distributed.

\[p_{X_i}(x) \neq p_{X_j}(x) \text{ or } p_{X_i|s}(x) \neq p_{X_i}(x) \]

• Here s is the context, that is the past observed values

• Krichevsky–Trofimov (KT) estimator is a powerful technique to estimate probability of sequences.

 • For discrete valued data

 • Data driven with no assumptions on independence and identically distributed symbols
• Example 5.3

• Assume binary data
• KT on a tree

probability of this symbol?

past values: the context

01001010…
A parameter to fudge to have probabilities

\[p(X_3 = 0|X_1 = 0, X_2 = 1) = \frac{0 + 1/2}{0 + 1} = \frac{1}{2} \]
The probability of this symbol? $	ext{01001010...}$

Past values: the context

That $1/2$ fudge parameter times the size of the alphabet

$$p(X_3 = 0 | X_1 = 0, X_2 = 1) = \frac{0 + 1/2}{0 + 1} = 1/2$$
\[p(X_3 = 0 | X_1 = 0, X_2 = 1) = \frac{0 + 1/2}{0 + 1} = \frac{1}{2} \]
how many times we have seen this context?

\[p(X_3 = 0|X_1 = 0, X_2 = 1) = \frac{0 + 1/2}{0 + 1} = 1/2 \]
past values: the context

how many times we have seen 0 given this context?

\[p(X_4 = 0|X_1 = 0, X_2 = 1, X_3 = 0) = \frac{0 + 1/2}{0 + 1} = 1/2 \]
how many times we have seen 0 given this context?

\[p(X_5 = 0|X_2 = 1, X_3 = 0, X_4 = 0) = \frac{0 + 1/2}{0 + 1} = 1/2 \]
• After a few steps, a familiar context appears
past values: the context

how many times we have seen 0 given this context?

\[p(X_9 = 0 | X_6 = 0, X_7 = 1, X_8 = 0) = \frac{1 + 1/2}{2 + 1} = 1/2 \]
probability of this symbol?

past values: the context

how many times we have seen this context?

\[
p(X_9 = 0|X_6 = 0, X_7 = 1, X_8 = 0) = \frac{1 + 1/2}{2 + 1} = 1/2
\]
• If data was assumed to be i.i.d.

 • Best estimate of probability of zero = 5/8

• Without i.i.d assumption and with our context

 • Best estimate of probability of zero = 1/2

• If the context was a little different—in one value

 • Best estimate of probability of zero = 1/4
Example 5.4

past values: the context

how many times we have seen this context?

probability of this symbol?

\[p(X_9 = 0 | X_6 = 0, X_7 = 1, X_8 = 0) = \frac{0 + 1/2}{1 + 1} = \frac{1}{4} \]
\[\hat{p}(X = 0|010) = \frac{1}{4} \]

Past values: the context.

Probability of this symbol?
\[
\hat{p}(X = 0 | 010) = \frac{1}{4}
\]
\[
\hat{p}(X = 0 | 101) = \frac{1}{2}
\]

probability of this symbol?

past values: the context

01011010...
The probability of this symbol?

\[
\hat{p}(X = 0|010) = \frac{1}{4}
\]

\[
\hat{p}(X = 0|101) = \frac{1}{2}
\]

\[
\hat{p}(X = 0|111) = \frac{1}{2}
\]

past values: the context

01011010...
• A universal method to compute the joint probability

\[\hat{p}_x = \hat{p}_{x_n|x_1^{(n-1)}} \hat{p}_{x_1^{(n-1)}} = \hat{p}_{x_n|x_1^{(n-1)}} \hat{p}_{x_{(n-1)}|x_1^{(n-2)}} \hat{p}_{x_1^{(n-2)}} \]

\[= \hat{p}_{x_n|x_1^{(n-1)}} \hat{p}_{x_{(n-1)}|x_1^{(n-2)}} \cdots \hat{p}_{x_2|x_1} \hat{p}_x \]

• Where \(X_1^n = (X_1, X_2, \ldots, X_n) \)
• The density estimator

• The KT algorithm

• The tree structure

• Converges to the true density

• Plugin estimator

\[\hat{H}(X) = - \sum_{i \in \{1, \ldots, n\}} \hat{p}_x \log \hat{p}_x \]
- Entropy of continuous valued random variables

\[h(X) = - \int_{x} f_X(x) \log f_X(x) dx \]

- Estimating the entropy
 - Plugin estimator
 - How does Histogram estimate perform?
• Example 5.5

• Data:
93.5, 93, 60.8, 94.5, 82, 87.5, 91.5, 99.5, 86, 93.5, 92.5, 78, 76, 69, 94.5, 89.5, 92.8, 78.6, 5.5, 98, 98.5, 92.3, 95.5, 76, 91, 95, 61.4, 96, 90
• Histogram of data

• Data:
93.5, 93, 60.8, 94.5, 82, 87.5, 91.5, 99.5, 86, 93.5, 92.5, 78, 76, 69, 94.5, 89.5, 92.8, 78, 65.5, 98, 98.5, 92.3, 95.5, 76, 91, 95, 61.4, 96, 90
• Histogram of data

• Data:
93.5, 93, 60.8, 94.5, 82, 87.5, 91.5, 99.5, 86, 93.5, 92.5, 78, 76, 69, 94.5, 89.5, 92.8, 78.6, 5.5, 98, 98.5, 92.3, 95.5, 76, 91, 95, 61.4, 96, 90
• Entropy of continuous valued random variables

\[h(X) = - \int f_X(x) \log f_X(x) \, dx \]

• Estimating the entropy

• Plugin estimator

• Histogram estimator performs poorly for high dimensional data

• Extreme dependence on bin size, even in one dimensional data

\[X_1^n = (X_1, X_2, \ldots, X_n) \text{ where } X_i \in \mathbb{R}^d \]
• Kernel density estimation (Parzen’s window)

• Based on n samples of d dimensional data

$$X^n_1 = (X_1, X_2, \ldots, X_n) \text{ where } X_i \in \mathbb{R}^d$$
• The concept:

- Consider the probability of a mass in a region

\[P = \int_A f_X(x) \, dx \]

- That is, the probability of a point being inside of area \(A \)
The concept:

- Consider the probability “mass” in a region

 \[P = \int_A f_X(x) \, dx \]

- That is, the probability of \(x \) being inside of area \(A \)

- The total number of data points is \(n \)

- The probability of \(k \) points being inside region \(A \) is \(P^k \)
• The total number of data points is n

• Probability of k out of n be inside region A is

$$\Pr(n, k) = \binom{n}{k} P^k (1 - P)^{n-k}$$

$$P = \int_A f_x(x) \, dx$$
For large n, the (average) number of points inside the region

$$k \approxnP$$

If the region is assumed to be small then the density will be approximately constant

$$P \approx f_X V_A$$

where V_A is the volume of A
If the region is assumed small then the density will be approximately constant

\[P \approx f_X V_A \]

The probability density function over a small region, however, with enough points inside is

\[f_X \approx \frac{k}{nV_A} \]
• If we fix the volume and determine k from the data

 • We will have KDE (Parzen’s window)

• If we fix k and determine the volume

 • We will have K-nearest neighbor (k-NN)
• Recall the density was approximated as

\[f_X \approx \frac{k}{nV_A} \]

• Then, in KDE the volume is fixed. Example of fixed volume hypercube

\[K(x) = \begin{cases}
1 & \text{if } |x^{(m)}| \leq 1/2, m = 1, 2, \ldots, d \\
0 & \text{otherwise}
\end{cases} \]

• If the data falls inside the cube it counts as one.
• If the region was a hypercube with side h then

$$K\left(\frac{\mathbf{X} - \mathbf{X}_i}{h}\right) \text{ will be 1}$$

• Since the point \mathbf{X}_i is inside the hypercube

• Then, the total number of data points inside the kernel is

$$k = \sum_{i=1}^{n} K\left(\frac{\mathbf{X} - \mathbf{X}_i}{h}\right)$$
• Example 5.6

• An illustrative example
volume

\[f_X \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \]

\[x \]
volume

f_X

x_1 x_2 x_3 x_4

$K(x - x_3)$

$K(x - x_4)$

x
The KDE

\[\hat{f}_h(x) = \frac{1}{nh^d} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right) \]

Using hypercube has similar rough boundaries as histogram approach does

A candidate kernel is Gaussian

\[K(x) \propto e^{-x^2} \]
• Example 5.7

• KDE example with small h
• Moderately small h
• Mid range value of h
• Large h
• The parameter h controls smoothness of resulting estimate

 • Choice of h is critical

 • There are still issues with KDE

 • Large dimensions

 • We can not guarantee to have enough points in each area A
• K nearest neighbor is a powerful alternative to KDE

• With k-NN, we fix the number of points in a region

• The k-NN estimate is

\[\hat{f}_X(x) = \frac{k}{nV} \quad \text{with } V \text{ as the volume with } k \text{ points} \]
• For a point \mathbf{x} to calculate density of the random vector at \mathbf{x}, that is, $f_X(\mathbf{x})$

• The distance

$$D_i = \|\mathbf{x} - \mathbf{x}_i\|_2 = \sqrt{\sum_{m=1}^{d} (x^{(m)} - x_i^{(m)})^2}$$

• Choose k nearest neighbors among all points

\[0 \leq D_3 \leq D_4 \leq D_2 \leq D_1\]
• For a point \mathbf{x} to calculate density of the random vector at \mathbf{x}, that is, $f_{\mathbf{X}}(\mathbf{x})$

• Choose 3 nearest neighbors among all points then calculate the volume

$$\hat{f}_{\mathbf{X}}(\mathbf{x}) = \frac{k}{nV} \text{ with } V \text{ as the volume with } k \text{ points}$$
• Blue density is the ground truth

• Red is the k-NN estimated density
$n=50$

$k=1$

$k=10$

$k=20$

$k=50$

$n=250$
• These are examples of two density estimators as plugins for estimating

 • Entropy
 \[\hat{h}(X) = - \int f_X(x) \log \hat{f}_X(x) \, dx \]

 • Mutual information
 \[\hat{I}(X; Y) = \hat{h}(X) - \hat{h}(X|Y) \]

 • Directed information
 \[\hat{I}(X^n_1 \rightarrow Y^n_1) = \hat{h}(Y^n_1) - \hat{h}(Y^n_1 || X^n_1) \]

• Coherence and mutual information in frequency
 \[MI_{X,Y}(f, f) = I(d\tilde{X}_f; d\tilde{Y}_f) = -\log[1 - C_{X,Y}(f)] \]
Summary for Set I

• A probabilistic approach to dealing with recorded signals and data

• Avoid unnecessary assumption of a model

• Data driven techniques to estimate features in data
 • correlation, dependence, causality, coherence