The Clinical Microbiology Laboratory of the 21st Century

Robin Patel, M.D.

Elizabeth P. and Robert E. Allen Professor of Individualized Medicine
Professor of Medicine, Professor of Microbiology
Mayo Clinic, Rochester MN
patel.robin@mayo.edu
Disclosures

- **Grants**: CD Diagnostics, Merck, Contrafect, Hutchison Biofilm Medical Solutions, Accelerate Diagnostics, Contrafect, Shionogi; monies paid to Mayo Clinic

- **Consultant**: Curetis, Specific Technologies, Next Gen Diagnostics, Selux Dx, GenMark Diagnostics, PathoQuest, Heraeus Medical, Qvella; monies paid to Mayo Clinic

- **Patents**: *Bordetella pertussis/parapertussis* PCR issued, device/method for sonication with royalties paid by Samsung to Mayo Clinic, anti-biofilm substance issued

- **Editor’s stipend**: ASM and IDSA

- **Honoraria**: NBME, Up-to-Date, the Infectious Diseases Board Review Course
Objectives

• Review the revolution in clinical microbial diagnostics over the past decade

• Learn about application of advances in microbial diagnostics in clinical practice

• Appreciate the science needed to inform the use of diagnostics in addressing antibacterial resistance
70% Clinical Decisions Substantially Based on Results of Diagnostic Tests

- Laboratory costs account for ~4% of health care costs; laboratory tests - single highest volume medical activity - # tests doubled in 20 years (~3,500)
- Costs rising 15-25%/year - faster than other areas of medicine - mostly due to molecular tests
- ~45% laboratory tests underutilized
- ~21% laboratory tests unnecessary

Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
The main application of proteomics in clinical microbiology is

A. Serologic testing
B. Identification of cultured bacteria and fungi
C. Antimicrobial susceptibility testing
D. Viral confirmation in cell lines
Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
20 Minute POC Organism-Specific PCR Cobas® Liat (Roche)

- Influenza A/B ± RSV, *Streptococcus pyogenes*
- Swab used to collect specimen → placed in liquid medium
- Liquid pipetted into reaction container
- Barcode scanned
- Reaction container placed into instrument

8-15 Minute POC Organism-Specific NAAT
Alere™ i Influenza A & B, Alere™ i RSV, Alere™ i Strep A
NEAR technology (Nicking Enzyme Amplification Reaction)
Changing Diagnostic Paradigms for Microbiology

A report from the American Academy of Microbiology and the American Society for Microbiology
Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
Blood Culture Bottle Panels
Randomized Controlled Clinical Trial
Mayo Clinic 2013-2014

Patients with positive blood cultures
Stratified randomization (age, ICU, transplant service)

CONTROL

- Gram stain called to service
- Standard subculture and susceptibility (1-3 d)

RAPID TEST ALONE

- Gram stain called to service
- Standard subculture and susceptibility (1-3 d)
- Rapid test plus lab call with comments (1 h)

RAPID TEST/STEWARDSHIP

- Gram stain called to service
- Standard subculture and susceptibility (1-3 d)
- Rapid test plus lab call with comments (1 h)
- ID MD/pharmacist call with specific treatment recommendations


Supported by the National Institute of Allergy And Infectious Diseases of the National Institutes of Health under Award Number UM1AI104681 (Antibacterial Resistance Leadership Group)
# FilmArray® Blood Culture Identification Panel (BioFire)

<table>
<thead>
<tr>
<th>Gram Positive Bacteria</th>
<th>Gram Negative Bacteria</th>
<th>Fungi</th>
<th>Resistance Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>Klebsiella oxytoca</td>
<td>Candida albicans</td>
<td>bla&lt;sub&gt;KPC&lt;/sub&gt;</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Klebsiella pneumoniae</td>
<td>Candida glabrata</td>
<td>mecA</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>Serratia</td>
<td>Candida krusei</td>
<td>vanA/vanB</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Proteus</td>
<td>Candida parapsilosis</td>
<td></td>
</tr>
<tr>
<td>Enterococcus Listeria monocytogenes complex</td>
<td>Acinetobacter baumannii</td>
<td>Candida tropicalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haemophilus influenzae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neisseria meningitidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enterobacteriaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enterobacter cloacae</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Clinical Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Control (n=207)</th>
<th>Rapid Test (n=198)</th>
<th>Rapid Test + Stewardship (n=212)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay (days)</td>
<td>8 (5,15)</td>
<td>8 (5,15)</td>
<td>8 (5,16)</td>
<td>0.60</td>
</tr>
<tr>
<td>30-day mortality</td>
<td>22 (10.6%)</td>
<td>20 (10.1%)</td>
<td>18 (8.5%)</td>
<td>0.74</td>
</tr>
<tr>
<td>30-day readmission w/same organism</td>
<td>6 (2.9%)</td>
<td>6 (3%)</td>
<td>8 (3.8%)</td>
<td>0.88</td>
</tr>
<tr>
<td>Toxicity/adverse drug reaction</td>
<td>3 (1.4%)</td>
<td>3 (1.5%)</td>
<td>2 (0.9%)</td>
<td>0.82</td>
</tr>
<tr>
<td>Blood culture clearance in 3d</td>
<td>147 (71%)</td>
<td>131 (66.2%)</td>
<td>146 (68.9%)</td>
<td>0.79</td>
</tr>
<tr>
<td><em>C. difficile</em> /Drug-resistant organism(^1) within 30d</td>
<td>15 (7.2%)</td>
<td>16 (8.1%)</td>
<td>21 (9.9%)</td>
<td>0.62</td>
</tr>
</tbody>
</table>

\(^1\)VRE, MRSA, ESBLs, Gram negative bacilli resistant to ≥3 drug classes

## Comparison of Time To Identification, Susceptibility Results, and Antibiotic Modifications

<table>
<thead>
<tr>
<th>Timeline, hours (h)</th>
<th>0</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=169)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid test (n=147)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid test + Stewardship (n=165)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **ID**: Organism identification
- **AST**: Phenotypic antimicrobial susceptibility report
- **D**: De-escalation
- **E**: Escalation

*Significant vs. control; †Significant vs. control and rapid multiplex PCR alone

**Antimicrobial stewardship oversight in second intervention group**

Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
# Automated Specimen Processing

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Specimen type</th>
<th>Inoculation technique</th>
<th>Capacity (plates inoculated/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Innova</strong>&lt;br&gt;BD</td>
<td>Liquid based specimen</td>
<td>Loop</td>
<td>180</td>
</tr>
<tr>
<td><strong>InoqulA FA/MI</strong>&lt;br&gt;(Full Automation/Manual Interaction)&lt;br&gt;BD-Kiestra</td>
<td>Liquid based specimen (FA)&lt;br&gt;Swab (MI)</td>
<td>Bead</td>
<td>400</td>
</tr>
<tr>
<td><strong>PREVI Isola</strong>&lt;br&gt;bioMérieux</td>
<td>Liquid based specimen</td>
<td>Comb</td>
<td>180</td>
</tr>
<tr>
<td><strong>WASP™</strong>&lt;br&gt;(Walk away specimen processor)&lt;br&gt;Copan</td>
<td>Liquid based specimen</td>
<td>Loop</td>
<td>180</td>
</tr>
</tbody>
</table>
Total Laboratory Automation

Wasp Lab

BD-Kiestra
Digital Imaging
Virtuo Blood Culture System (bioMérieux)
Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
The 16S ribosomal RNA (rRNA) gene is a conserved gene among

A. Fungi
B. Viruses
C. Parasites
D. Bacteria
E. Prions
16S Ribosomal RNA Gene
Mycobacterium lepromatosis
MLST

- 5-7 housekeeping genes
  - Sequence type (ST) and Clonal complex (CC)
  - Public nomenclature

Used mainly for studying bacterial phylogeny & evolution of population lineages

Core Genome MLST

- Hundreds/thousands of ‘core genome’ genes
  - Scalable, portable and understandable
  - Public, additive, and expandable nomenclature
  - Higher discrimination power than MLST

MLST

- 7 genes
- 0.1% of FAM18 genome

Core Genome MLST

- 1,241 genes
- 54.5% of FAM18 genome
NICU MRSA Outbreak(s)

- Reinforcement of basic practices
- Environmental sampling and deep cleaning
- Observe practices
- Environmental remodeling

- Targeted screening for NICU infants
- Universal weekly screening for NICU infants

Number of cases

- Screening isolate (infant)
- Screening isolate (HCW)
- Clinical isolate (infant)

Madigan et al. Infect Cont Hosp Epi 2018;39:1412-18
Neonatal Intensive Care Unit (NICU) Isolates (Clinical & Surveillance) Neonates & Healthcare Workers
Outbreak Timeline with MRSA Cases Shown by WGS Group

Madigan et al. Infect Cont Hosp Epi 2018;39:1412-18
Metagenomic Shotgun Whole Genome Sequencing

Sequence ALL DNA present using short 150-300 bp reads
Current Orthopedic Implant Processing - Mayo Clinic

- Prosthesis Placed in Container (Operating Room)
- 400 ml Ringer’s Solution Added
- Vortex 30 sec
- Vortex 30 sec
- Centrifuge 5 min
- Aspiration
- Plating
- Sonicate 5 min
- Vortex 30 sec

© 2019 Mayo Foundation for Medical Education and Research
Methods

- Microbial DNA enrichment: MoLYsis Basic5 kit
- DNA extraction: MoBio Bacteremia DNA isolation kit
- Whole genome amplification: Qiagen REPLI-g Single Cell kit
- Amplified DNA purification: Agencourt Ampure XP beads
- Paired-end library prep: NEBNext Ultra DNA Library Prep Kit
- Sequencing: Illumina HiSeq 2500 in rapid run mode with paired end reads at 250 cycles (multiplexed 6 samples/lane, ~30,000,000 paired-end reads/sample)
- Adapter sequence removal: Trimmomatic (v0.36)
- Human & PhiX sequence removal: BioBloom tools (v2.0.12)
- Data analysis: Livermore Metagenomics Analysis Toolkit (LMAT, v1.2.6) and MetaPhIAn2
Metagenomics versus Culture

- 408 sonicate fluid samples tested
  - 195 aseptic failures
  - 213 PJIs

### Metagenomic Analysis vs. Sonicate Fluid Culture

<table>
<thead>
<tr>
<th></th>
<th>Samples</th>
<th>Identical Findings</th>
<th>Organisms Not Identified by Metagenomics</th>
<th>New Organisms Detected by Metagenomics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Aseptic Failures</strong></td>
<td>195</td>
<td>188 (96.4%)</td>
<td>N/A</td>
<td>7 (3.6%)</td>
</tr>
<tr>
<td><strong>Culture-Positive PJIs</strong></td>
<td>115</td>
<td>99 (86.1%)</td>
<td>6 (5.2%)</td>
<td>11 (9.6%)</td>
</tr>
<tr>
<td><strong>Culture-Negative PJIs</strong></td>
<td>98</td>
<td>55 (56.1%)</td>
<td>N/A</td>
<td>43 (43.9%)</td>
</tr>
</tbody>
</table>

New or Missed Identifications by Metagenomics vs. Sonicate Fluid Culture

| PJI Organisms Not Detected by Metagenomics | Bacillus species | Mycobacterium abscessus Porphyromonas species | Pseudomonas aeruginosa (2) |
| New Organisms Detected in Aseptic Failures | Cutibacterium acnes (2) | Staphylococcus aureus (3) | Streptococcus sanguinis (2) |
| New Organisms Detected in Culture-Positive PJIs | Anaerococcus obesiensis Clostridium species Cutibacterium acnes Enterobacter cloacae* | Finegoldia magna (3)* Peptoniphilus harei Prevotella nanciensis Staphylococcus aureus | Staphylococcus epidermidis (6) Staphylococcus lugdunensis (2) Varibaculum cambriense |
| New Organisms Detected in Culture-Negative PJIs | Anaerococcus urinae Candida albicans (2)* Candida parapsilosis* Clostridium perfringens Corynebacterium pseudogenitalium Cutibacterium acnes Enterococcus faecalis (3)* | Enterobacter cloacae (2)* Facklamia languida Granulicatella adiacens (2)* Mycobacterium bovis BCG* Mycoplasma salivarium Peptoniphilus species Pasteurella multocida* | Staphylococcus aureus (10)* Staphylococcus epidermidis (5)* Staphylococcus haemolyticus (2)* Staphylococcus lugdunensis Streptococcus agalactiae (4) Streptococcus dysgalactiae (4)* Streptococcus oralis* |

53 yo Man – Right Knee PJI

A.

R knee arthroplasty

Knee pain, stiffness, swelling, and sinus tract development

Multiple courses of oral antibiotics

Referral to Mayo Clinic for evaluation

6 weeks IV antibiotics

R knee arthroplasty resection

Sinus tract development

Nov 2012

April 2013

2014

July 2015

Feb 2016

April 2016

July 2016

April 2017

Synovial fluid: 28,756 cells/mm³ (93% PMNs), cultures negative. ESR: 53, CRP: 71.6

Synovial fluid: 2,288 cells/mm³ (80% PMNs), cultures negative. PCR for *M. hominis* negative. ESR: 44, CRP: 51.3

ESR: 44, CRP: 51.3

Metagenomic analysis of Feb 2016 sonicate fluid positive for *M. salivarum*

Synovial fluid: 11,596 cells/mm³ (94% PMNs). 16S rRNA gene PCR/sequencing positive for *M. salivarum*

B.

All Reads (27,984,652)

Microbial Reads (1906)

Bacterial Reads (1881)

- Human (27,049,593)
- Read Too Short (87,868)
- Low LMAT Score (812,657)
- Microbial (1906)
- No Database Hits (16,796)
- Chimeras (420)
- Cellular Organism (15,412)

- Bacteria (1,881)
- Protozoa (14)
- Fungi (11)
- Viruses (0)

- Mycoplasma (1,796)
- Curvibacter (2)
- Acinetobacter (58)
- Burkhholderia (1)
- Propionibacterium (19)
- Rubrivivax (1)
- Paenibacillus (4)
Antibiotic Resistance Prediction

Macrolide resistance-associated mutations in 23S rRNA gene of *M. pneumoniae*


Alignment of case to reference *M. salivarium* and *M. pneumoniae* 23S rRNA genes

Metagenomic Shotgun Sequencing of Synovial Fluid

<table>
<thead>
<tr>
<th>Samples</th>
<th>Identical findings</th>
<th>Organisms Not Identified by Metagenomics</th>
<th>New Organisms Detected by Metagenomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseptic Failures</td>
<td>61</td>
<td>56 (91.8%)</td>
<td>1 (1.6%)</td>
</tr>
<tr>
<td>Synovial Fluid Culture-Positive PJIs</td>
<td>82</td>
<td>67 (81.7%)</td>
<td>14 (17.1%)</td>
</tr>
<tr>
<td>Synovial Fluid Culture-Negative PJIs</td>
<td>25</td>
<td>21 (84.0%)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Outline

1. Proteomics
2. POC nucleic acid amplification tests
3. Panel-based molecular diagnostics
4. Laboratory automation
5. Sequencing-based diagnostics
6. Susceptibility testing improvements
Rapid Phenotypic Susceptibility Testing –
Example, Accelerate ID/AST (Application –
Positive Blood Culture Bottles)
Sample Prep - Gel Electrofiltration

- Blood cells lysed
- Sample added to gel electrofiltration well (contains gel with pores smaller than bacteria)
- Positive charge applied → debris migrates into gel leaving bacteria behind.
- Negative charge applied → bacteria move to center of well for ease of retrieval.
Electrokinetic Concentration

TIME-LAPSE IMAGE OF SURFACE CAPTURE IN LESS THAN 5 MINUTES
Antimicrobial Susceptibility Testing

- Time-lapse imaging and analysis of bacterial growth
- Individual bacterial response to single antibiotic concentration over time

*E. coli* vs. 4 μg/mL piperacillin-tazobactam

![Graph showing bacterial growth over time](image)
Multicenter Study
Accelerate Pheno™ System

- Fresh clinical and seeded blood cultures
- VITEK® 2 identification, broth microdilution or disk AST
- Identification sensitivities 94.6-100%

Gram-positive cocci
- Essential agreement 97.6%
- Categorical agreement 97.9%
- Very major, major & minor error rates: 1.0%, 0.7% & 1.3%

Gram-negative bacilli
- Essential agreement 95.4%
- Categorical agreement 94.3%
- Very major, major & minor error rates: 0.5%, 0.9% & 4.8%

Pancholi et al. J Clin Microbiol. 2018;56i:e01329-17
Rapid Identification and Susceptibility Testing for Gram-Negative Bacteremia

- Multi-center, prospective, randomized, controlled, factorial design trial evaluating antimicrobial utilization, clinical outcomes, and healthcare costs among patients with BSIs caused by GNB who receive:
  - Standard culture and AST plus bacteremia-focused antimicrobial stewardship program oversight
  - Rapid identification and AST with bacteremia-focused antimicrobial stewardship program oversight
More Reflections…

• NEED actionable tests which when acted on, improve patient outcomes

• Ideal tests remain to be defined
  • …and then commercialized
  • Who will commercialize “niche” tests?
    ➢ e.g., Abbott IRIDICA

• Ultimately, tests need to be paid for
  • What if more testing shown to be beneficial?
  • What if novel testing adds cost
Summary

• Proteomics prevail (for colony picking)
• PCR moves to POC
• Panels proliferate
• Automation advances
  • Specimen plating, plate incubation, plate reading & work-up
• Sequencing sprawls
  • Bacterial whole genome sequencing – typing Gold standard
  • 16S rRNA gene PCR/sequencing and metagenomic shotgun sequencing for pathogen detection
    • Clinically-infected but culture-negative
• Susceptibility speeds
Acknowledgments and Funding

Kerryl Greenwood-Quaintance, MS
Melissa Karau
Suzannah Schmidt-Malan, MS
Matt Thoendel, MD, PhD
Morgan Ivy
Patricio Jeraldo, PhD
Nicholas Chia, PhD
Aaron Tande, MD
Trisha Peel, MD
Douglas Osmon, MD
Thao Masters, PhD
Charles Cazanave, MD
Marta Fernandez-Sampedro, MD
Trisha Peel, PhD
Yumi Wi, MD
Andrej Trampuz, MD
Paolo Melendez, MD
Eric Gomez-Urena, MD
Cassandra Brinkman, PhD
Mark Rouse
Jon Badiola, MD
Kimberly Perez
Katharine Caflisch
Paloma Anguita Alonso, MD
Maria Ruiz Ruizgomez, MD
Awele Maduka-Ezeh, MD
Jin Won Chung, MD
Jose del Pozo, MD
Seong Yeol Ryu, MD
Larry Baddour, MD
Rizwan Sohail, MD
Harmony Tyner, MD
Paschalis Vergidis, MD
James Steckelberg, MD
Elie Berbari, MD
Franklin Cockerill, MD
Jayawant Mandrekar, PhD
Arlen Hanssen, MD
Matt Abdel, MD
David Lewallen, MD
Robert Trousdale, MD
Mark Pagnano, MD
Miguel Cabanela, MD
David Jacofsky, MD
Franklin Sim, MD
Daniel Berry, MD
Michael Stuart, MD
Robert Cofield, MD
Paul Huddleston, MD
John Sperling, MD
Joaquin Sanchez-Sotelo, MD
Mark Dekutoski, MD
Bradford Currier, MD
Mike Yaszemski, MD
Youlonda Loechler
Krishnan Unni, MD
James Greenleaf, PhD
James Uhl
Scott Cunningham, MS
Clinical Microbiology Bacteriology and IP Staff
Mayo Clinic patients