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Abstract—In this paper we consider multi-cell mmWave net-
works wherein each cell equipped with a large antenna array can
employ an analog precoder (or a group of analog beams) to serve
its associated users, while each such user can employ a single
analog beam. A key problem over such a network is to determine
the set of users that each cell should serve (a.k.a. user association),
the group of beams it should employ, as well as their attributes
such as how often and with how much power should each beam
be used. This problem becomes harder since the choice of beam
at any user is coupled to the cell it is assigned to and the latter’s
choice of beams. Moreover, practical considerations demand that
each transmitting and receiving beam and their attributes be
selected from finite codebooks. We develop novel solutions to this
seemingly intractable problem. We adopt the generalized Quality-
of-Service (QoS) Proportional Fairness (PF) network utility which
can balance efficiency with fairness, and is particularly relevant
for coverage constrained mmWave systems, since QoS constraints
demand provisioning a minimum rate for each user. We prove
that, remarkably, the user association problem under this QoS-
PF utility can be formulated as a constrained submodular
set function maximization problem. Consequently, it can be
optimally solved (upto an additive constant) using distributed
algorithms. We then propose a simple distributed algorithm to
optimize the choice of beams and their attributes, and prove
that it converges to a social equilibrium even in the presence of
a non-ideal communication channel among cells.

I. INTRODUCTION

The key components that are expected to provide bulk of
the throughput improvements in 5G networks are Massive
MIMO and mmWave. The former involves employing large
antenna arrays, which with ideal channel state information
(CSI), promises to dramatically improve multiplexing gains
[1]. On the other hand, the latter seeks to harvest large chunks
of hitherto unused spectrum bands. It is also recognized that
exploiting mmWave for access necessitates highly directional
radiation of signal energy to overcome the high propagation
loss, which in turn is made possible by beamforming using
large antenna arrays [2]. However, supporting a fully flexible
(or digital) beamforming is considered prohibitive (in lieu of
the very high bit rates that the ADCs must operate under)
and as a result hybrid architectures have gained prominence.
These architectures involve the use of a group of analog beams
driven by a limited number of RF chains at each node and have
received significant recent attention [3].

In this paper we focus on mmWave networks employing
hybrid precoding in a multi-cell setting. An important aspect
then is interference management among cells via coordination.
However, owing to the very small channel coherence time at
high carrier frequencies, achieving coordination among cells
that seeks to exploit short term CSI imposes stringent con-
straints on latency in CSI gathering and dissemination, as well
as constraints on reliability of inter-cell communication links.
Such strict limits are quite unlikely to be met which makes the
former coordination schemes ill suited and even detrimental.
Fortunately, the large-scale fading parameters such as path loss
and spatial correlations (which depend on angles of arrival and
departure, path delays and array geometries) change at much
coarser time scales, and can indeed be gainfully employed
in coarse-level coordination schemes. This observation has
been exploited in recent works, such as the JSDM scheme
where angular spectra of users in a cell is used to partition
them into non-overlapping groups [4], [5], as well as in
schemes proposing cell-specific precoding and two time-scale
resource management [7]. We add to this body of work by

analyzing multi-cell mmWave systems with two important
practical considerations, namely, restricting analog beams and
attributes to finite codebooks and non-ideal communication
links between cells. Our key contributions in this work are:
• We prove that the user association problem to opti-
mize the generalized QoS-PF utility can be formulated as a
submodular set function maximization problem. This result
opens up a variety of distributed and centralized algorithms
which can be used to determine an approximately optimal user
association. We note here that research on user association
or load balancing is well established [8] and of particular
practical interest since it requires limited coordination among
cells. Indeed, combinations of load balancing with several
resource management schemes have also received wide atten-
tion [9]–[15]. However, no analytical result on load balancing
to optimize the QoS-PF utility have so far been derived. In
this context, we note that QoS-PF utility (entailing minimum
rate constraints) is very relevant for mmWave since it ensures
provisioning for coverage. Our proof methodology for showing
submodularity is also novel and has wider applications. Indeed,
as a by-product we obtain the result that the generalized
water-filling problem (with arbitrary non-identical weights)
is a submodular maximization problem. We note that [17]
demonstrated the submodularity of waterfilling (when used to
maximize Shannon rates over power allocations in a multi-
channel setting) with identical weights. As noted by the au-
thors of [17], extending their intricate proof to the generalized
case with arbitrary weights was intractable. Our proof solves
this open problem by devising an alternate novel approach.
• We propose a simple distributed algorithm to optimize
the analog beam parameters. The proposed method provably
converges to a social equilibrium even in the presence of
backhaul erasures. In this context, we note that randomized
algorithms have been used for discrete optimization in a multi-
cell setting [18]. The novelty of our approach compared to
[18], is that it is fully aligned to the 3GPP signalling frame-
work for backhaul communications [16] and offers robustness
against non-idealities in such communication.

In the following, we present the two key results along with
proofs. Due to space constraints we defer further details on
practical implementation as well as simulation results to [20].

II. PROBLEM FORMULATION

We consider the downlink in a multi-cell network and let
U denote the set of users with cardinality |U| = K. Each user
has multiple receive antennas, one receive RF chain and can
choose any vector from a finite codebook for analog receive
beamforming. LetM denote the set of TPs, where each TP has
NTX & STX transmit antennas and RF chains, respectively.
Further, let B denote a codebook of transmit analog beams.
For each TP m ∈ M, let Γm,b ∈ S denote the duty cycle
of the bth beam for TP m, where S denotes a pre-defined
finite set of such duty cycles. In particular, each Γm,b lies in
the unit interval [0, 1] and denotes the fraction of the frame
duration for which the bth beam is activated in the mth TP.
Thus, Γm,b = 0 implies that the bth beam is not activated
at all by the mth TP, whereas Γm,b = 1 implies that the bth
beam is activated for the entire frame duration by the mth TP.1

1Note that we do not optimize the precise positions (or subframes) in a
frame where a beam is activated by a TP, since doing so without the knowledge
of instantaneous fading seen on that subframe will not be useful.
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Γ = [Γm,b]m∈M,b∈B denotes the collection of all chosen duty
cycles, whereas Γ(m) = [Γm,b]b∈B denotes those pertaining to
TP m for each m ∈M. Then, let Pm denote the power-level
at which the signal is transmitted along any beam used by the
mth TP and let P denote the finite set of all possible power
levels. Finally, let P = [Pm]m∈M be the vector of chosen
power levels.

Let Ru,m,b(Γ,P) denote an estimated achievable peak rate
for the uth user when it is served by the mth TP using the
bth beam, given all the chosen duty cycles in Γ and power
levels in P. We allow for any suitable peak rate estimation
rule (cf. [6]) which uses: (i) estimates of the slow fading
parameters (e.g. path loss, shadowing and spatial correlations)
seen by user u on the frame of interest (we assume these
estimates are available) but not the instantaneous fast-fading
ones and (ii) the best analog receive beamforming vector at
user u among those in the given finite receive beamforming
codebook. We are now ready to pose the problem of interest
in (1). In (1) 1{.} denotes an indicator function which is one
if the input argument is true and is zero otherwise. Noting
that the objective in (1) is the generalized PF utility in which
wu > 0 is the weight assigned to the uth user, we proceed to
the explain the constraints imposed:
• The first set of constraints enforce that the sum of the non-
negative fractions {γu,m,b} for each TP and beam combi-
nation, which are normalized by the duty cycle chosen for
that combination and henceforth are referred to as allocation
fractions, over all the users should not exceed unity. Further,
the sum of duty cycles across all activated beams in any TP
m should not exceed the number of transmit RF chains STX.
• The total number of activated beams at any TP should not
exceed L. Note that STX ≤ L ≤ NTX. Choosing a larger value
of L can improve performance but at the cost of an increased
channel state information (CSI) acquisition overhead.
• The chosen set of duty cycles and the power level at any TP
m must be compatible, i.e., must satisfy fm(Γ(m), Pm) ≤ 1.
For instance, the function fm(.) can check the sum power
budget at TP m.
• Considering each user, we impose minimum rate constraints.
By incorporating such minimum rate constraints, we have
addressed the most general PF utility that allows for different
user priorities and Quality-of-Service (QoS).
• We also impose the constraint that each user is allowed to
be served by any one TP using any one beam. This constraint
is meaningful for coarse time scale optimization in mmWave
systems since each user will receive bulk of its data along
one beam, which is typically LoS. Note however that the
beamforming vectors used by a TP in the fine time-scale
(subframe granularity) to serve its associated users will be
constructed based on the knowledge of instantaneous fading
and can be any vectors in the span of its chosen beam group.
A schematic is shown in Fig. 1 where it can be seen that the
configuration on the right is better optimized.

Fig. 1. Two system configurations each depicting user association (dashed
line), transmit and receive analog beamforming, with the opacity of the beams
being proportional to their power levels or duty cycles

III. AN ALTERNATING OPTMIZATION FRAMEWORK

We adopt an alternating optimization framework to optimize
(1). In particular, we optimize the user association and beam

parameters (duty cycles and power levels) in an alternating
manner. In each case we provide novel algortihms with certain
optimality guarantees.

A. Optimizing user association and allocation fractions
In this section we jointly optimize the user association and

allocation fractions for any given set of duty cycles and power
levels (Γ̂, P̂). The problem of interest can be written as in (2),
where we let xu,m,b denote an indicator variable that is one
if user u can be served using beam b and TP m and zero
otherwise. Notice that upon fixing any choice of {xu,m,b}
the optimizination of allocation fractions in (2) decouples
into |M||B| optimization problems, one for each beam,TP
combination. Define a ground set Ω = {(u,m, b), u ∈ U , b ∈
B,m ∈ M} where (u,m, b) conveys the association of
user u with TP m and beam b (i.e., is equivalent to setting
xu,m,b = 1). Without loss of generality we suppose that only
a tuple (u,m, b) for any u ∈ U & b ∈ B,m ∈ M for which
Ru,m,b(Γ̂, P̂) ≥ Rmin

u is included in Ω. This is because any
tuple not satisfying this assumption will never be selected as
its minimum rate cannot be met even when the assigned TP
along the chosen beam fully allocates its resource to that
user. Let Ω(m′,b′) = {(u,m, b) ∈ Ω : b = b′,m = m′}
denote all possible associations of users to the TP and beam
combination m′, b′, where b′ ∈ B & m′ ∈ M, and let
Ω(u′) = {(u,m, b) ∈ Ω : u = u′} denote all possible
associations of a user u′ ∈ U . Define a family of sets J
as as the one which includes each subset of Ω such that
the tuples in that subset have mutually distinct users and
the minimum rates of those users are feasible. Notice that
any G ∈ J specifies a particular choice of {xu,m,b} for (2)
satisfying

∑
m∈M

∑
b∈B xu,m,b ≤ 1, ∀ u ∈ U and if G is

maximal (i.e., |G| = K) then we have a valid user association
satisfying

∑
m∈M

∑
b∈B xu,m,b = 1, ∀ u ∈ U . Further, J

is a downward closed family, i.e., if G ∈ J then each subset
of G is also a member of J . Next, we define a real-valued
set function on J , f2 : J → IR such that it is normalized
f(φ) = 0, where φ is the empty set, and for any non-empty
set G ∈ J , we have

f(G) =
∑
m∈M

∑
b∈B

fm,b(G ∩ Ω(m,b)). (3)

Each fm,b : J (m,b) → IR in (3) is a normalized set function
that is defined on the family J (m,b) comprising of each
member of J that is contained in Ω(m,b), as follows. For
any set A ∈ J (m,b), we define fm,b(A) to be the optimal
objective value obtained by optimizing the allocation fractions
of all users with xu,m,b = 1 for the combination m, b under
consideration. The optimization of the allocation fractions for
any (m, b) and the associated users is detailed in Proposition
2 along with a a simple necessary and sufficient condition to
determine feasibility of the minimum rates for the given choice
of association. With these definitions in hand, can re-formulate
the problem in (2) as the following constrained set function
maximization problem.

max
G∈J :|G|=K

{f(G)} (4)

We offer our first main result that characterizes f(.).

Theorem 1. The set function f(.) is a normalized submodular
set function.

Proof. The set function f(.) in (3) defined on the family J is
normalized by construction. Then, to establish submodularity
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max
Γm,b∈S,Pm∈P,γu,m,b∈[0,1]

∀ u∈U,b∈B,m∈M

{∑
u∈U

wu log

( ∑
m∈M

∑
b∈B

Ru,m,b(Γ,P)γu,m,b

)}
s.t.
∑
b∈B

Γm,b ≤ STX &
∑
u∈U

γu,m,b ≤ 1, ∀ b ∈ B,m ∈M;
∑
b∈B

1 {Γm,b > 0} ≤ L & fm(Γ(m), Pm) ≤ 1, ∀ m ∈M;∑
m∈M

∑
b∈B

γu,m,bRu,m,b(Γ,P) ≥ Rmin
u ,

∑
m∈M

∑
b∈B

1 {γu,m,b > 0} = 1, ∀ u ∈ U ;

(1)

max
xu,m,b∈{0,1},γu,m,b∈[0,1]

∀ u∈U,b∈B,m∈M

{∑
u∈U

wu log

( ∑
m∈M

∑
b∈B

Ru,m,b(Γ̂, P̂)γu,m,bxu,m,b

)}
s.t.
∑
u∈U

γu,m,bxu,m,b ≤ 1, ∀ b ∈ B,m ∈M;
∑
m∈M

∑
b∈B

γu,m,bxu,m,bRu,m,b(Γ̂, P̂) ≥ Rmin
u , ∀ u ∈ U ;∑

m∈M

∑
b∈B

xu,m,b = 1, ∀ u ∈ U .

(2)

of f(.) on the family J , it suffices to show that each fm,b(.) is
submodular on the family J (m,b). Without loss of generality,
we consider any TP m with beam b and will prove that

fm,b(E ∪ (u1,m, b))− fm,b(E) ≥
fm,b(F ∪ (u1,m, b))− fm,b(F), (5)

for all E ⊆ F ∈ J (m,b) : |F| = |E| + 1 and any
(u1,m, b) ∈ Ω \ F : F ∪ (u1,m, b) ∈ J (m,b). Towards
this end, we expand F = E ∪ (u2,m, b) where we must
have (u2,m, b) ∈ J (m,b) with u2 6= u1. Then, we evaluate
fm,b(F ∪ (u1,m, b)) as described in Proposition 2 (using unit
budget) and in the obtained optimal allocation fractions let
the share of resource (allocation fraction) assigned to user
u1 in tuple (u1,m, b) be δ1 . Similarly, let the share of
resource assigned to user u2 in tuple (u2,m, b) be δ2. Define
ζ̂ = 1− δ1 − δ2. Thus, we have that

fm,b(F ∪ (u1,m, b)) = Ô(ζ̂) + wu1
log(Ru1,m,b(Γ̂, P̂)δ1)

+wu2 log(Ru2,m,b(Γ̂, P̂)δ2), (6)

where Ô(ζ̂) is the objective value evaluated for the tuples in
E under the budget ζ̂, using Proposition 2. Further, it can be
readily verified that

fm,b(F) ≥ Ô(ζ̂ + δ1) + wu2 log(Ru2,m,b(Γ̂, P̂)δ2),

fm,b(E) = Ô(ζ̂ + δ1 + δ2)

fm,b(E ∪ (u1,m, b)) ≥ Ô(ζ̂ + δ2) + wu1 log(Ru1,m,b(Γ̂, P̂)δ1).
(7)

Using (6) and (7) in (5), it is now seen that a sufficient
condition for (5) to hold is for (13) to be true. The latter is
assured by Proposition 2 which yields our desired result.

The significance of Theorem 1 is that (4) is a constrained
submodular set function maximization problem which can be
approximately maximized by leveraging existing distributed or
centralized algorithms [19], which can guarantee optimality
upto an additive constant.

B. Optimizing beam parameters and allocation fractions
We suppose that a user association, {xu,m,b = x̂u,m,b}, has

been given. We proceed to optimize the set of duty cycles
and power levels based on the given association. In particular,
for each TP m ∈ M we first determine Um to be the set
of users associated with TP m under the given association,
i.e., Um = {u ∈ U : maxb∈B{x̂u,m,b} = 1}. Then, for

each TP, we optimize the beam parameters as well as the
intra-TP user association, i.e., we allow for each user in Um
to be served by TP m using any one beam in B. This is
important since otherwise we will be restricted to using only
the beams that have at-least one associated user as per the
given association and no beam alteration at any TP would be
possible. Next, we define a state of any TP m ∈ M by its
choice of duty cycles and power levels as ψm = (Γ(m), Pm).
The set of all feasible states that any TP can be is finite
and is denoted by Ψ. Here by a feasible state for any TP
m we mean the state that satisfies the constraints imposed on
the sum of the chosen duty cycles and number of activated
beams, as well as the compatibility between the chosen duty
cycles and power level. Notice that Ψ ⊆ (⊗b∈BS) ⊗ P . The
system state is defined as the collection of states of all TPs,
as ψ = {ψm}m∈M. Finally, the set of all system states is
denoted by Ψ = ⊗m∈MΨ. Notice that Ψ is also finite with
cardinality at-most |S||M||B||P||M|. We write Ru,m,b(Γ,P)
as Ru,m,b(ψ), ∀ b ∈ B, u ∈ Um and define the region of all
feasible allocation fractions at any TP m ∈M as,

Fm(ψ) =
{
γu,m,b ∈ [0, 1] ∀u ∈ Um, b ∈ B :∑

u∈Um

γu,m,b ≤ 1, ∀ b ∈ B;∑
b∈B

γu,m,bRu,m,b(ψ) ≥ Rmin
u , ∀ u ∈ Um;∑

b∈B

1{γu,m,b > 0} ≤ 1, ∀ u ∈ Um
}
.

We can now formulate the problem of interest in (8). Note
here that for any (tentative) choice of system state ψ, the
inner maximization problem at each TP m in (8) is just the
intra-TP user association and allocation fraction optimization
problem, which we can express as a constrained submodular
maximization problem (cf. Theorem 1). We adopt the natural
greedy algorithm to sub-optimally solve this problem and let
hm(ψ) denote the value obtained by TP m. We remind that
each TP can adopt any centralized algorithm to solve its sub-
problem and we set hm(ψ) = −∞ whenever the minimum
rates of all users in Um cannot be met using the chosen
method. Let h(ψ) denote the objective value in (8) obtained
as h(ψ) =

∑
m∈M hm(ψ).

Next, for each TP m ∈M, given its current state ψm ∈ Ψ,
we define the set of actions as Θ(ψm,m). Here, Θ(ψm,m) ⊂
Ψ and denotes the set of other states TP m can transition
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max
ψ∈Ψ

 ∑
m∈M

max
{γu,m,b}u∈Um

b∈B
∈Fm(ψ)

{ ∑
u∈Um

wu log

(∑
b∈B

Ru,m,b(ψ)γu,m,b

)} (8)

to from its current one. As will be revealed by our analysis,
limiting the size of Θ(ψm,m) reduces the complexity but at
the cost of performance guarantee. To quantify the impact of
any action ϑ ∈ Θ(ψm1,m1) by TP m1 on itself as well as any
other TP in M, we let g(ϑ,m1,m2,ψ) denote the change in
utility over users associated to TP m2 when TP m1 changes
its state to ϑ and all other TPs retain their respective current
states. Notice that each TP m2 can compute

g(ϑ,m1,m2,ψ) = hm2(ψ′)− hm2(ψ), (9)

where ψ′ includes the changed state of TP m1, ϑ, while ψ
includes the original state of TP m1. Thus, the impact (or
change in system utility) of TP m1 taking action ϑ can be
quantified as

∑
m2∈M g(ϑ,m1,m2,ψ).

With these definitions in hand, we offer Algorithm I and
proceed to explain it. The time axis is divided into intervals of
identical size, referred to as update intervals. In each interval,
each TP m1 requests the impact of each of its allowed actions
on the utility contribution of all other TPs. We allow for a
realistic scenario in which the backhaul connection between
TP m1 and TP m2 ∈ M : m2 6= m1 is vulnerable to errors
or jitters. We model each backhaul channel as an erasure
channel, where the erasures are independent across update
intervals and backhaul channels. Accordingly, we suppose that
the impact of all of its actions can be obtained by TP m1 with
probability q(ψm1,m1)

4
=
∏
m2∈M:m26=m1 q(ψm1,m1,m2)

where this probability is strictly positive and is allowed to
depend on the TP and its state. Then, if no erasures occur, TP
m1 determines its best action with respect to improvement in
system utility (assuming all other TPs retain their respective
states). Further, if the best such improvement is greater than
a specified threshold ε, the corresponding action is accepted
with a probability pm1. The process continues till no TP can
determine a state (in the absence of erasures) that can offer an
improvement greater than ε. Notice that the sequence of system
states seen across update intervals need not be monotonic (with
respect to the system utility). This is because the algorithm
is distributed and multiple TPs can update their states in
an interval. Despite this we can guarantee convergence to a
social equilibrium. Let us define an absorbing state (or social
equilibrium) as one in which no single TP can improve the
system utility more than ε, by changing its state to any one in
the allowed set of actions. Specifically ψ ∈ Ψ is an absorbing
state if for any other state ψ′ ∈ Ψ such that ψ′ differs from
ψ only in the state of any one TP m and that differing state
satisfies ψ′

m ∈ Θ(ψm,m), we have that h(ψ) ≥ h(ψ′)− ε.

Proposition 1. Algorithm I provably converges to an absorb-
ing system state.

Proof. To prove this claim, we note that an optimal system
state (which yields the globally optimal system utility in (8)
for the given association among all feasible states) exists and
is also an absorbing state. Thus, the set of absorbing states is
finite and non-empty. Further, given any non-absorbing system
state it can be verified that we can construct a finite sequence
of system states that begins at the given state and ends at
an absorbing one, such that each transition from any state to
the next one in that sequence involves an update by exactly
one TP and yields a gain (in the system utility) better than ε.
Moreover, given any two system states ψ,ψ′ we can deduce
that a transition from ψ to ψ′ is only possible if for each TP m

TABLE I
DISTRIBUTED BEAM GROUP MANAGEMENT

Initialize with a user association, a feasible system state ψ ∈ Ψ,
probabilities {pm}m∈M and a threshold ε ≥ 0.
Repeat
At each TP m1 ∈M:

For each TP m2 6= m1 do
Request and obtain ĝ(ϑ,m1,m2,ψ),∀ ϑ ∈ Θ(ψm1,m1)

End For
If no erasure in feedback from any TP

Compute

∆(ϑ,m1) =
∑

m2∈M
g(ϑ,m1,m2,ψ), ∀ ϑ ∈ Θ(ψm1,m1) (10)

Determine ϑ̂m1 = arg maxϑ∈Θ(ψm1,m1){∆(ϑ,m1)}
Else

Set ϑ̂m1 = ψm1 and ∆(ϑ̂m1,m1) = 0.
End If
Set decision to update to be false

If ∆(ϑ̂m1,m1) > ε then
Flip decision to update to true with probability pm1

EndIf
For each received request from any TP m2 6= m1 for its action ϑ′,

compute
g(ϑ′,m2,m1,ψ) and report to TP m2.

If decision to update is true then
Update ψm1 to ϑ̂m1 and convey updated state to all other TPs.

End If
Collect all updated states from all other TPs.

Until Termination conditions are satisfied.

either ψ′
m = ψm or ψ′

m ∈ Θ(ψm,m). For each such possible
transition we can explicitly determine the transition probability
p(ψ → ψ′) as in (11). Notice that this transition probability
depends only on the system states ψ,ψ′. Consequently, the
sequence of system states seen across the update intervals
forms an absorbing, time homogeneous Markov Chain. Hence,
convergence to an absorbing state is guaranteed.

Remark 1. Note that if for any TP m1 ∈M, the probabilities
q(ψm1,m1)∀ ψm1 ∈ Ψ all lie in the open interval (0, 1), then
Algorithm I will almost surely converge to an absorbing state
even without any randomized rule (i.e., with pm1 = 1) at TP
m1. In other words, since the backhaul injects randomization,
Algorithm I will almost surely converge even if TP m1 always
(deterministically) chooses its best action whenever it can
determine that action’s gain to be greater than ε.

IV. CONCLUSIONS

We presented novel analytical results and algorithms for
user association and analog beam parameter optimization over
multi-cell mmWave networks.

APPENDIX

Proposition 2. Consider any budget ζ > 0, any set of users U ′

along with their minimum rates {Rmin
u }u∈U ′ and peak rates

{Ru}u∈U ′ such that
∑
u∈U ′

Rmin
u

Ru
≤ ζ. Let Ô(ζ) denote the

optimal objective value of the following optimization problem.

max
γu∈[0,1]∀ u∈U ′

{∑
u∈U ′

wu log (Ruγu)

}
s.t.

∑
u∈U ′

γu ≤ ζ; γuRu ≥ Rmin
u , ∀ u ∈ U ′; (12)
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 ∏
m∈M
ψm 6=ψ′m

q(ψm,m)1{ψ′
m = ϑ̂m & ∆(ϑ̂m,m) > ε}pm


 ∏

m∈M
ψm=ψ′m

(1{∆(ϑ̂m,m) ≤ ε}+ 1{∆(ϑ̂m,m) > ε}(1− q(ψm,m) + q(ψm,m)(1− pm)))

 . (11)

Then, for any non-negative scalars δ, δ̃, we have that

Ô(ζ)− Ô(ζ + δ) ≤ Ô(ζ + δ̃)− Ô(ζ + δ + δ̃). (13)

Proof. We suppose, without loss of generality, that the user
set U ′ can be parsed as U ′ = U1∪U2 where U1 = {1, · · · , k},
such that Rmin

u > 0,∀ u ∈ U1 and Rmin
u = 0,∀ u ∈ U2.

Further, suppose that w1a1 < w2a2 < · · · < wkak, where
au = Ru

Rmin
u
, u ∈ U1.2 Then, letting ζ̃ = ζ −

∑
u∈U1

Rmin
u

Ru
denote the slack budget, i.e., the budget left after meeting the
minimum rate requirements, we can re-write (12) as,

η + max
γ̃u∈[0,1]

∀ u∈U′

{∑
u∈U1

wu log (1 + auγ̃u) + (14)∑
u∈U2

wu log (Ruγ̃u)
}

s.t.
∑
u∈U ′

γ̃u ≤ ζ̃;

where η =
∑
u∈U1

wu log
(
Rmin
u

)
. Next, since (14) is a convex

optimization problem which is feasible for the given budget,
we can employ the necessary and sufficient K.K.T. conditions
to deduce the following. For any given slack budget ζ̃, we will
have a partition of U1 as U1 = {1, · · · ,m−1}∪Ũ1(ζ̃), where
Ũ1(ζ̃) = {m, · · · , k} depends on ζ̃, such that users 1 to m−1
will be assigned exactly their minimum rates. Further, the
assigned allocation fractions must satisfy γu = wu

λ ,∀ u ∈ U2,
where λ > 0 is the Lagrangian variable, and all users in
Ũ1(ζ̃) are allocated resources in excess of their minimum
rate requirements as γ̃u = wu

λ −
1
au
, u ∈ Ũ1(ζ̃). Next, since

the available slack budget ζ̃ must be fully used, we get that
λ =

∑
u∈U2

wu+
∑
Ũ1(ζ̃) wu

ζ̃+
∑
u∈Ũ1(ζ̃) 1/au

. We define a0 = w0 = 0 & ak+1 =

wk+1 =∞ and partition IR+ as Ik+1 ∪ Ik ∪ · · · ∪ I1, where
It =

[
At
wtat

−Bt, At
wt−1at−1

−Bt
)

, At =
∑
u∈U2

wu +
∑k
j=t wj

and Bt =
∑k
j=t 1/aj for t = 1, · · · , k + 1. Depending on

the interval in which the slack budget lies in the above parti-
tion, we can detail the optimal objective value. In particular,
suppose that ζ̃ ∈ It. Then, Ũ1(ζ̃) = {t, · · · , k} and

Ô(ζ̃) =
∑

u∈U1\Ũ1(ζ̃)

wu log(Rmin
u ) +

∑
u∈U2∪Ũ1(ζ̃)

wu log(wuRu)

+
∑

u∈U2∪Ũ1(ζ̃)

wu log

(
ζ̃ +

∑
u∈Ũ1(ζ̃)

1/au∑
u∈U2

wu +
∑
u∈Ũ1(ζ̃)

wu

)
. (15)

We can now verify that whenever the slack budget lies in
the open interval ζ̃ ∈

(
Bt
wtat

−At, At
wt−1at−1

−Bt
)

for some
t = 1, · · · , k + 1 we can compute the derivative of Ô(ζ̃)

with respect to ζ̃ by treating Ũ1(ζ̃) as constant, as ∂Ô(ζ̃)

∂ζ̃
=

At/(ζ̃+Bt). Notice now that within each open interval ∂Ô(ζ̃)

∂ζ̃

decreases as ζ̃ increases. Next, we can define and obtain
the right derivative at the left boundary of the tth interval

2Note that for any given set of weights and minimum rates the scalars
{wkak} will be distinct almost surely whenever the slow fading coefficients
(on which the peak rates depend) are drawn from a continuous distribution.

ζ̃ = At
wtat

−Bt, as

lim
δ→0+

Ô(ζ̃ + δ)− Ô(ζ̃)

δ
=

At

ζ̃ +Bt
= wtat, (16)

for t = 1, · · · , k. Similarly, we can and obtain the left
derivative at the right boundary of the (t + 1)th interval,
ζ̃ = At+1

wtat
−Bt+1 = At

wtat
−Bt, as

lim
δ→0−

Ô(ζ̃ + δ)− Ô(ζ̃)

δ
=

At+1

ζ̃ +Bt+1

= wtat. (17)

It is seen that the left and right derivatives match. Thus we
have shown that the derivative of Ô(ζ̃) exists and is decreasing
in ζ̃ for all ζ̃ > 0 (or equivalently for all ζ >

∑
u∈U1

Rmin
u

Ru
).

This implies that Ô(ζ̃) is concave in ζ̃ for all ζ̃ > 0, which
suffices to deduce that the result in (13) is indeed true. Finally,
we note that (14) can be specialized to the waterfilling problem
considered in [17] by setting U1 = U ′, wu = w, ∀ u ∈ U ′.

REFERENCES
[1] Y. Lim, et.al., “Performance analysis of massive mimo for cell-boundary

users,” IEEE Trans. Wireless. Comm., Dec. 2015.
[2] T. Rappaport, et.al., “Millimeter wave mobile communications for 5G

cellular: It will work,” IEEE Access, May 2013.
[3] A. Alkhateeb, et.al., “Limited feedback hybrid precoding for multi-user

millimeter wave systems,” IEEE Trans. Wireless Commun. (revised), Mar.
2015.

[4] A. Adhikary, et. al., “Joint spatial division and multiplexing for mm-wave
channels,” IEEE JSAC., Jun. 2014.

[5] A. Adhikary and G. Caire, “JSDM and multi-cell networks: Handling
inter-cell interference through long-term antenna statistics,” IEEE Asilo-
mar, Nov. 2014.

[6] Z. Li, et.al., “Directional Training and Fast Sector-based Processing
Schemes for mmWave Channels,” arXiv, Nov. 2016.

[7] N. Prasad, et.al., “A two time scale approach for coordinated multi-point
transmission and reception over practical backhaul,” in IEEE Comsnets
(invited), jan 2014.

[8] J. Andrews, et.al., “An overview of load balancing in HetNets: Old myths
and open problems,” in IEEE commun. mag.(submitted), July 2013

[9] G. Athanasiou, et.al., “Optimizing client association for load balancing
and fairness in millimeter-wave wireless networks,” IEEE Trans. Netw.,
vol. 23(3), 2015.

[10] H. Shokri-Ghadikolaei, et.al., “Millimeter wave cellular networks: A
mac layer perspective,” IEEE Trans. Commun., Oct. 2015.

[11] K. Shen and W. Yu, “Distributed pricing-based user association for
downlink heterogeneous cellular networks,” in IEEE Journal Sel. Areas.
Commun., Jun. 2014.

[12] Q. Ye, et.al., “User association for load balancing in heterogeneous
cellular networks,” in IEEE Trans. on Wireless Comm., June 2013.

[13] N. Prasad, et.al., “Exploiting cell dormancy and load balancing in LTE
hetnets: Optimizing the proportional fairness utility,” in IEEE Trans. on
Commun., Oct. 2014.

[14] D. Bethanabhotla, et.al., “Optimal user-cell association for massive
mimo wireless networks,” v2, arXiv, feb 2015.

[15] E. Altman, et.al., “Spatial sinr games of base station placement and
mobile association,” IEEE Infocom., 2009.

[16] “3GPP Technical Report 36.842. Small cell enhancements for E-UTRA
and E-UTRANHigher Layer Aspects”, V1.0.0 (2013-11) www.3gpp.org

[17] K. Thekumparampil, et.al., “Combinatorial Resource Allocation Using
Submodularity of Waterfilling,” in IEEE Trans. Wireless Comm., Jan.
2016.

[18] H. Zhang, et.al., “Weighted Sum-Rate Maximization in Multi-Cell
Networks via Coordinated Scheduling and Discrete Power Control”, in
IEEE JSAC, Jun. 2011.

[19] V. Singh, et.al.,“Optimizing user association and activation fractions in
heterogeneous wireless networks,” in IEEE WiOpt, June. 2015.

[20] Y. Ghasempour, et.al., “Managing Analog Beams in mmWave
Networks,” Extended Version, https://www.dropbox.com/home/Papers-
NEC?preview=BeamManagementISIT17L.pdf Jan. 2017


