Boolean modeling of regulatory circuit governing Epithelial-Mesenchymal Transition (EMT)

M Hisamatsu1,2, S Tripathi3, MW Deem3, MK Jolly3, H Levine3

1Department of Physics, Osaka University, Osaka, Japan, 2Nakatani RIES: Research & International experiences for Students 3Center for Theoretical Biological Physics, Rice University, Houston, TX

EMT / MET : Engine of Cellular Plasticity

EMT/MET is critical for cancer metastasis and therapy resistance that claim nearly all of cancer-related deaths. The dynamics of EMT/MET is not well-studied, hence limiting our ability to identify new therapeutic targets.

Goal: Understand the nonlinear dynamics of EMT/MET

1. Core EMT network is bistable

Boolean rules:
- $\text{SNAIL} = (\text{signal AND SNAIL})$ or $(\text{NOT SNAIL AND (signal AND NOT miR-34)})$
- $\text{miR-34} = (\text{NOT SNAIL})$ AND (NOT ZEB)
- $\text{miR-200} = (\text{NOT SNAIL})$ AND (NOT ZEB)
- $\text{ZEB} = (\text{SNAIL OR ZEB})$ AND (NOT miR-200)

- Sequence of the network nodes as shown: (SNAIL, miR-34, miR-200, ZEB)
- Signal is exogenous TGF-β (E)

Simulation Results

2. Asynchronous simulations reveal the co-existence of two states

- The diagram here shows the average of 5000 asynchronous simulations, each starting from the same initial state.
- The value of each node can be 0 or 1. Average values represent that both steady states are attained with a certain probability.
- In absence of signal (E=0), cells attain epithelial state.

3. GRHL2 and OVOL stabilize epithelial state

New rules for GRHL2, OVOL, and ZEB:
- $\text{GRHL2} = (\text{NOT miR-200})$ and GHRL
- $\text{OVOL} = \text{NOT ZEB}$
- $\text{ZEB} = (\text{NOT GRHL2})$ AND (NOT OVOL) AND (NOT miR-200) AND (ZEB OR SNAIL)

Conclusion

- Core EMT network can have two stable states - epithelial (high miR-34 and miR-200, low ZEB and SNAIL), and mesenchymal (low miR-34 and miR-200, high ZEB and SNAIL)
- Relative stability of states depend on EMT-inducing signal, GRHL2 and OVOL.
- GRHL2 and OVOL can stabilize epithelial state, and maintain it even in presence of EMT-inducing signal as well as when the signal is taken away.

Acknowledgement

This research project was a part of the 2018 Nakatani RIES Fellowship Program funded by NAKATANI Foundation. I would like to express my special thanks to CTBP, Rice University for hosting me, as well as Prof. Kono, Kenji Ogawa, Sarah Phillips, and Aki Shimada for the exciting opportunity.