CAAM 454/554: Numerical Analysis II

Homework 1, January, 2019

Due: By 8pm, February 6, 2019

- Unless specified, the problems should be solved by CAAM 454 and by CAAM 554 students.
- All MATLAB functions mentioned in this homework assignment can be found on the CAAM454/554 homepage (http://maartendehoop.rice.edu/caam-454/), or come with MATLAB. You can use the MATLAB codes posted on the CAAM454/554 web-page. Turn in all MATLAB code that you have written/modified and turn in all output generated by your MATLAB functions/scripts. MATLAB functions/scripts must be commented, output must be formatted nicely, and plots must be labeled.

Total points: CAAM 454 - 120 points; CAAM 554 - 190 points.

Problem 1 (20+10 = 30 points)

i. Let $\alpha > 0$, $\gamma \geq 0$, $\beta \in \mathbb{R}$ and consider the matrix

$$
A = \begin{pmatrix}
2\alpha + h^2 \gamma & -(\alpha - \frac{h}{2} \beta) \\
-(\alpha + \frac{h}{2} \beta) & 2\alpha + h^2 \gamma & -(\alpha - \frac{h}{2} \beta) \\
& \ddots & \ddots & \ddots \\
& & -(\alpha + \frac{h}{2} \beta) & 2\alpha + h^2 \gamma & -(\alpha - \frac{h}{2} \beta) \\
& & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & & \ddots & \ddots & \ddots \\
& & & & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & & & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & & & & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
\end{pmatrix}.
$$

Show that if $h < 2\alpha/|\beta|$, the entries a_{ij} of the tridiagonal matrix in (1) satisfy

$$
\sum_{j \neq i} |a_{ij}| \leq |a_{ii}| \quad \text{for } i = 1, \ldots, n,
$$

with “$<$” for $i = 1$ and $i = n$.

ii. Let $\alpha > 0$, $\gamma \geq 0$, $\beta \geq 0$ and consider the matrix

$$
A = \begin{pmatrix}
2\alpha + h\beta + h^2 \gamma & -\alpha \\
-(\alpha + h \beta) & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& \ddots & \ddots & \ddots \\
& & -(\alpha + h \beta) & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & & \ddots & \ddots & \ddots \\
& & & & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
& & & & & & -\alpha & 2\alpha + h\beta + h^2 \gamma & -\alpha \\
\end{pmatrix}.
$$
Show that for any $h > 0$ the entries a_{ij} of the tridiagonal matrix in (2) satisfy

$$\sum_{j \neq i} |a_{ij}| \leq |a_{ii}| \quad \text{for } i = 1, \ldots, n,$$

with “<” for $i = 1$ and $i = n$.

Problem 2 \((10+20 = 30 \text{ points})\) Let

$$A = D - E - F,$$

where D, $-E$ and $-F$ are given as in the notes. Given $\omega \in \mathbb{R}$, the relaxed Jacobi method is given by

$$x^{(k+1)} = (1 - \omega)x^{(k)} + \omega D^{-1}([E + F]x^{(k)} + b) = ((1 - \omega)I + \omega D^{-1}[E + F])x^{(k)} + \omega D^{-1}b.$$

Let $G_J = D^{-1}[E + F]$ be the iteration matrix of the Jacobi method and let

$$G_{J,\omega} = (1 - \omega)I + \omega D^{-1}[E + F]$$

be the iteration matrix of the relaxed Jacobi method.

i. \((10 \text{ points})\) Show that if G_J has eigenvalues λ_i, $i = 1, \ldots, n$, then $G_{J,\omega}$ has eigenvalues $1 - \omega + \omega \lambda_i$, $i = 1, \ldots, n$

ii. \((20 \text{ points})\) Show that if all eigenvalues of G_J are real and ordered such that $\lambda_1 \geq \ldots \geq \lambda_n$ and if $\lambda_1 < 1$, then the spectral radius of $G_{J,\omega}$ is minimal for

$$\omega_{\text{opt}} = \frac{2}{2 - \lambda_1 - \lambda_n}.$$
Problem 3 (10 points) Let \(A \in \mathbb{R}^{n \times n} \) be symmetric positive definite, \(b \in \mathbb{R}^n \), and let \(x^\ast \) be the solution of \(Ax = b \). Show that the iteration
\[
x^{(k+1)} = x^{(k)} - \omega (Ax^{(k)} - b)
\]
converges to the solution \(x^\ast \) of \(Ax = b \) for any \(x^{(0)} \) if and only if
\[
\omega \in \left(0, \frac{2}{\|A\|_2} \right).
\]

Note: If we define \(q(x) = \frac{1}{2} x^T Ax - b^T x \), then \(\nabla q(x) = Ax - b \) and the iteration \(x^{(k+1)} = x^{(k)} - \omega (Ax^{(k)} - b) = x^{(k)} - \omega \nabla q(x^{(k)}) \) is the steepest descent method for the minimization of \(q \). In the context of solving symmetric positive definite linear systems, this iteration is also known as the Richardson iteration.

Problem 4 (50/70 points) Consider the linear system
\[
\begin{pmatrix}
A & B^T \\
B & D
\end{pmatrix}
\begin{pmatrix}
y \\
z
\end{pmatrix}
= \begin{pmatrix}
e \\
f
\end{pmatrix}
\]
(3)
with nonsingular symmetric matrix \(A \in \mathbb{R}^{n \times n} \), symmetric matrix \(D \in \mathbb{R}^{m \times m} \), and matrix \(B \in \mathbb{R}^{m \times n} \).

i. (15 points) Show that (3) is equivalent to the Schur complement system
\[
(D - BA^{-1}B^T)z = f - BA^{-1}e.
\]
Conclude that \(S = D - BA^{-1}B^T \in \mathbb{R}^{m \times m} \) is nonsingular if and only if \(K \in \mathbb{R}^{(m+n) \times (m+n)} \) is nonsingular.

ii. (5 points) Show that
\[
\begin{pmatrix}
I & 0 \\
-BA^{-1} & I
\end{pmatrix}
\begin{pmatrix}
A & B^T \\
B & D
\end{pmatrix}
\begin{pmatrix}
I & -A^{-1}B^T \\
0 & I
\end{pmatrix}
= \begin{pmatrix}
A & 0 \\
0 & S
\end{pmatrix}

= L
\]

= K
\]

= L^T

iii. (20 points) Show that \(K \) is positive definite if and only if \(A, D, \) and \(S \) are positive definite.

iv. (10 points) Assume that \(K \) is positive definite (in particular \(A, D, \) and \(S \) are positive definite).

Show that the block (forward) Gauss-Seidel method
\[
\begin{pmatrix}
y^{(k+1)} \\
z^{(k+1)}
\end{pmatrix}
= \begin{pmatrix}
A & 0 \\
B & D
\end{pmatrix}^{-1}
\begin{pmatrix}
0 & -B^T \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
y^{(k)} \\
z^{(k)}
\end{pmatrix}
+ \begin{pmatrix}
A & 0 \\
B & D
\end{pmatrix}^{-1}
\begin{pmatrix}
e \\
f
\end{pmatrix}
\]
is equivalent to the iteration
\[
z^{(k+1)} = D^{-1}BA^{-1}B^Tz^{(k)} + D^{-1}(f - BA^{-1}e).
\]
v. (CAAM 554, 20 points) Again assume that K is positive definite (in particular A, D, and S are positive definite).

Show that the eigenvalues of the iteration matrix $D^{-1}BA^{-1}B^T$ are contained in $[0, 1)$.

Problem 5 (CAAM 554, 20+10+5+15 = 50 points) Let $A, M \in \mathbb{R}^{n \times n}$ be symmetric positive definite and consider the iteration

$$x^{(k+1)} = (I - M^{-1}A)x^{(k)} + M^{-1}b.$$

i. Show that if $2M - A$ is positive definite, then all eigenvalues of $I - M^{-1}A$ are contained in the interval $(-1, 1)$. In particular, $\rho(I - M^{-1}A) < 1$.

ii. Show that if $M - A$ is positive semidefinite, then all eigenvalues of $I - M^{-1}A$ are contained in the interval $[0, 1)$. In particular, $\rho(I - M^{-1}A) < 1$.

iii. Let $A = D - E - F$ where D, $-E$ and $-F = -E^T$ are given as in the notes, and let $M = D$.

Show that if $2D - A$ is positive definite, the Jacobi method converges.

iv. Let $A = D - E - F$ where D, $-E$ and $-F = -E^T$ are given as in the notes, and let

$$M = (D - E)D^{-1}(D - E^T).$$

Show that $\rho(I - M^{-1}A) < 1$.

This iteration matrix corresponds to the so-called symmetric Gauss-Seidel method.