Recent developments in QEPAS – a spectroscopic technique for trace gas sensing

Antonina Geras1,2a, Tomasz Starecki1,2, Angelo Sampaolo,3, Vincenzo Spagnolo3, Pietro Patimisco3, Lei Dong2,4 and Frank K. Tittel2

1 Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

2 Department of Electrical and Computer Engineering, Rice University, Houston, TX 77004, USA

3 Dipartimento Interateneo di Fisica, University and Politecnico of Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari, Italy

4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China

a e-mail: antonina@geras.pl

Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique for photoacoustic detection of trace gases utilizing a quartz tuning fork (TF) as a resonant acoustic transducer. Advantages of the technique compared to conventional resonant photoacoustic spectroscopy include QEPAS sensor immunity to environmental acoustic noise, a simple absorption detection module design, and its capability to analyze gas samples of \textasciitilde 1 mm3. The theoretical basis of the QEPAS technique, the associated technology in terms of laser sources, quartz-tuning forks and the recent developments in detection methods as well as performance limitations will be discussed. In particular, a newly introduced family of customized tuning forks will be presented, as well as preliminary results of their performance in comparison to standard commercial tuning forks operating at 32.6 kHz.

Acknowledgements

A. Geras acknowledges support from the Kosciuszko Foundation.