New developments in Quartz enhanced photoacoustic gas sensing in the Infrared and THz spectral ranges

Vincenzo Spagnolo*1, Pietro Patimisco1,2, A. Sampaolo1,2, M. Giglio1, G. Scamarcio1, Frank K. Tittel2

1 Dipartimento Interateneo di Fisica, Università degli studi di Bari and Politecnico di Bari, CNR-IFN BARI, Via Amendola 173, Bari, I-70126, Italy
2 Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.

Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a very powerful technique that allows selective and sensitive measurements of trace gases in an ultra-small acoustic detection module (ADM) with a total sample volume of only a few mm³ [1]. The principle of this technique is based on the photoacoustic (PA) effect, where the absorption of modulated laser radiation by gas molecules causes a periodic heating of the chemical species. The heating results in thermal expansion, and leads to a pressure change in the targeted media. The generated pressure wave is detected by a quartz tuning fork (QTF) acting as sharply resonant piezoelectric transducer.

I will report an overview of the latest developments in QEPAS trace-gas sensor technology such as the design and realization of custom QTFs with different geometries providing an enhancement of optoacoustic generation efficiency [2], QEPAS sensors operating in QTF first overtone flexural mode [3] and QEPAS sensors employing a single-tube acoustic micro-resonator providing an improvement of the detection sensitivity by two orders of magnitude compared to a bare QTF [4].

References