Recent Advances in Infrared Semiconductor based Chemical sensing Technologies

F.K. Tittel, L. Dong, A.A. Kosterev, R. Lewicki and D. Thomazy
Rice Quantum Institute, Rice University, Houston, TX, USA
http://ece.rice.edu/lasersci/

• Motivation: Wide Range of Trace Gas Sensing
• Key Characteristics of QC Lasers: Oct. 2009
• Quartz enhanced Photoacoustic Spectroscopy
• Selected Applications of Trace Gas Detection
 ▪ NH$_3$ Detection for Environmental and Medical Applications
 ▪ Nitric Oxide detection
• Future Directions and Outlook
 ▪ Development of Semiconductor Laser Arrays
 ▪ Monitoring of broadband absorbers (Detection of UF$_6$)
 ▪ Optical Power Built-up Cavity (OPBC) for QEPAS Sensor

Work supported by NSF, NASA, DoE and the Robert Welch Foundation
Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g. fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
- Applications in Health and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry
Existing Methods for Trace Gas Detection

Non-Optical

Mass Spectroscopy

Chemical

Gas Chromatography

Electro Chemical

Chemiluminescence

Black Body Sources

Fourier Transform

Gas Filter Correlation

Optical

Coherent Sources

Microwave Spectroscopy

Laser Spectroscopy
Basics of Optical Trace Gas Analyzers

Beer-Lambert’s Law of Linear Absorption

\[I(\nu) = I_0 e^{-\alpha(\nu) P_a L} \]

- \(\alpha(\nu) \) - absorption coefficient [cm\(^{-1}\) atm\(^{-1}\)]; L - path length [cm]
- \(\nu \) - frequency [cm\(^{-1}\)]; \(P_a \) - partial pressure [atm]

\[\alpha(\nu) = C \cdot S(T) \cdot g(\nu - \nu_0) \]

- \(C \) - total number of molecules of absorbing gas/atm/cm\(^3\) [molecule/cm\(^3\) · atm\(^1\)]
- \(S \) - molecular line intensity [cm · molecule\(^{-1}\)]
- \(g(\nu - \nu_0) \) - normalized spectral lineshape function [cm], (Gaussian, Lorentzian, Voigt)

Key Requirements: Sensitivity, specificity, rapid data acquisition and multi-species detection

Optimum Molecular Absorbing Transition
- NIR Overtone or Combination Bands
- MIR Fundamental Absorption Bands

Long Optical Pathlengths
- Multipass Absorption Cell White, Herriott)
- Cavity Enhanced, Cavity Ringdown & Intracavity Spectroscopy
- Open Path Monitoring (with retro-reflector); Standoff and Remote Detection
- Fiberoptic evanescent wave Spectroscopy

Spectroscopic Detection Schemes
- Wavelength or Frequency Modulation
- Balanced Detection
- Zero-air Subtraction
- Photoacoustic Spectroscopy (PAS or QEPAS)
- Laser Induced Breakdown Spectroscopy
Molecular Absorption Spectra within the two Mid-IR Atmospheric Windows

Source: HITRAN 2000 database
Mid-IR Source Requirements for Laser Spectroscopy

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>IR LASER SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (% to ppt)</td>
<td>Optimum Wavelength, Power</td>
</tr>
<tr>
<td>Selectivity (Spectral Resolution)</td>
<td>Single Mode Operation and Narrow Linewidth</td>
</tr>
<tr>
<td>Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers</td>
<td>Tunable Wavelength</td>
</tr>
<tr>
<td>Directionality or Cavity Mode Matching</td>
<td>Beam Quality</td>
</tr>
<tr>
<td>Rapid Data Acquisition</td>
<td>Fast Time Response</td>
</tr>
<tr>
<td>Room Temperature Operation</td>
<td>No Consumables</td>
</tr>
<tr>
<td>Field deployable</td>
<td>Compact & Robust</td>
</tr>
</tbody>
</table>
Key Characteristics of mid-IR QCLs and ICL Sources-2009

- **Band – structure engineered devices**
 (Emission wavelength is determined by layer thickness – MBE or MOCVD); mid-infrared QCLs operate from 3 to 24 μm (AlInAs/GaInAs)

- Compact, reliable, stable, long lifetime, and commercial availability

- Fabry-Perot (FP), single mode (DFB) and multi-wavelength

- **Broad spectral tuning range in the mid-IR**
 (4-24 μm for QCLs and 3-5 μm for ICLs and GaSb diodes)
 - 1.5 cm\(^{-1}\) using injection current control for DFB devices
 - 10-20 cm\(^{-1}\) using temperature control for DFB devices
 - > 430 cm\(^{-1}\) using an external grating element and FP chips with heterogeneous cascade active region design; also QCL DFB r array

- **Narrow spectral linewidth**
 - CW: 0.1 - 3 MHz & <10Khz with frequency stabilization (0.0004 cm\(^{-1}\))
 - Pulsed: ~ 300 MHz

- **High pulsed and cw powers of QCLs and ICLs at TEC/RT temperatures**
 - Pulsed and CW powers of ~ 1.5 W; high temperature operation ~300K
 - >50 mW, TEC CW DFB @ 5 and 10 μm
 - > 600 mW (CW FP) @ RT; wall plug efficiency of ~15 % at 4.6μm;
Quantum Cascade (QC), Interband (IC) and GaSb Laser Availability in Oct. 2009

- **Commercial Sources**
 - Adtech, CA
 - Alpes Lasers, Switzerland & Germany
 - Alcatel-Thales, France
 - Corning, NY
 - Hamamatsu, Japan
 - Physical Sciences, Inc (Maxion Technologies, Inc),
 - Nanoplus, Wuerzburg, Germany

- **Research Groups**
 - Harvard University
 - Fraunhofer-IAF, Freiburg, Germany
 - NASA-JPL, Pasadena, CA
 - Naval Research Laboratories, Washington, DC
 - Northwestern University, Evanston, IL
 - Princeton University (MIRTHE), NJ
 - Sheffield, UK
 - State University of New York
 - Technical University, Zuerich, CH
 - University of Montpelier, France
Quartz Enhanced
Photoacoustic Spectroscopy
Quartz Tuning Fork as a Resonant Microphone

Unique properties
- Extremely low internal losses:
 - Q~10 000 at 1 atm
 - Q~100 000 in vacuum
- Acoustic quadrupole geometry
 - Low sensitivity to external sound
- Large dynamic range – linear from thermal noise to breakdown deformation
 - 300K noise: $x \sim 10^{-11}$ cm
 - Breakdown: $x \sim 10^{-2}$ cm
- Wide temperature range: from 1.56K (superfluid helium) to ~700K
- Low cost (<$1)

Other parameters
- Resonant frequency ~32.8 kHz
- Force constant ~26800 N/m
- Electromechanical coefficient ~7×10^{-6} C/m
QEPAS spectraphone

Microresonator tubes

- Must be close to the QTF but not touching it (30-50 mm gaps).
- Inner diameter 0.41 mm; 10% lower signal with 0.6 mm diameter tubes.
- Each piece ~5mm long (~1/2 for sound at 32.8 kHz)

Gain: ×10 to ×20

Windows

- Must be tilted to prevent the reflected light from going back into the microresonator.
- Exact positioning is not important, to the best of our current knowledge.
Comparative Sizes of QEPAS & PAS ADMs

Optical multipass cell (100 m):
$l \sim 70 \text{ cm}$, $V \sim 3000 \text{ cm}^3$

Resonant photoacoustic cell (1000 Hz):
$l \sim 60 \text{ cm}$, $V \sim 50 \text{ cm}^3$

QEPAS spectrophone:
$l \sim 1 \text{ cm}$, $V \sim 0.05 \text{ cm}^3$
Alignment-free QEPAS Absorption Detection Module
Recent Applications of QCL based Trace Gas Sensors
Motivation for NH$_3$ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH$_3$ concentrations in the exhaust stream of NO$_x$ removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)
Important Biomedical Target Gases in Exhaled Human Breath

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula</th>
<th>Biological/Pathology Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentane</td>
<td>$CH_3(CH_2)_3CH_3$</td>
<td>Lipid peroxidation, oxidative stress associated with inflammatory diseases, immune responses, transplant rejection, breast and lung cancer</td>
</tr>
<tr>
<td>Ethane</td>
<td>C_2H_6</td>
<td>Lipid peroxidation and oxidative stress</td>
</tr>
<tr>
<td>Carbon Dioxide isotope ratio</td>
<td>$^{13}CO_2 / ^{12}CO_2$</td>
<td>Marker for Helicobacter pylori infection, Gastrointestinal and hepatic function</td>
</tr>
<tr>
<td>Carbonyl Sulfide</td>
<td>COS</td>
<td>Liver disease & acute rejection in lung transplant recipients (10-500 ppb)</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>CS$_2$</td>
<td>Schizophrenia</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH$_3$</td>
<td>Hepatic encephalopathy, liver and renal diseases, fasting response</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>HCHO</td>
<td>Cancerous tumors, breast cancer (400-1500 ppb)</td>
</tr>
<tr>
<td>Nitric Oxide</td>
<td>NO</td>
<td>Inflammatory and immune responses (e.g., asthma) and vascular smooth muscle response (6-100 ppb)</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>H_2O_2</td>
<td>Airway Inflammation, Oxidative stress (1-5 ppb)</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>CO</td>
<td>Smoking response, CO poisoning, vascular smooth muscle response, platelet aggregation (400-3000 ppb)</td>
</tr>
<tr>
<td>Ethylene</td>
<td>$H_2C=CH_2$</td>
<td>Oxidative stress, cancer</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH_3COCH_3</td>
<td>Fasting response, diabetes mellitus response, ketosis</td>
</tr>
</tbody>
</table>
Noise-equivalent concentration (NEC) is 6 ppb for a 1s time constant and 20mW excitation power at 1046.4 cm\(^{-1}\) (110 Torr)
- Controlled flow
- Continuous control of mouth pressure
- Continuous monitoring of CO$_2$ concentration (capnograph) and its use in QEPAS data processing

T.Risby: 12:00 Sept.7 & Poster
Wavenumber dependance of CW RT DFB QCL output power

NH₃ absorption line of interest (967.35 cm⁻¹) 2009 Hamamatsu QCL
Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NO_x monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)
Motivation for Nitric Oxide Detection

- Environmental pollutant
 - Product of fossil fuel combustion process (automobile and power plant emissions)
 - Precursor of smog and acid rain
EC-QCL Based Faraday Rotation Spectrometer

- EC-QCL Operating at 5.3μm – NO Fundamental Band
- 44cm effective optical pathlength
- Rochon Polarizer Extinction Ratio <10⁻⁵
- Not sensitive to water interference
- Sensitivity Not Limited by Interference Fringes
- Gas Cell Volume (~ 250ml)
- Easy and Robust Optical Alignment
- Continuous NO Monitoring (Absorption Line Locking enabled with mode-hop free tuning using Zeeman Modulation at 3rd harmonic)
Faraday Rotation Spectroscopy of Nitric Oxide

- 96 ppb NO on N₂
- $I_{\text{cd}}=850$ mA, $P=40$ Torr
- $T_C=1$ s, $\text{SEN}=2$ mV
- $\text{freq}_{\text{mod}}=950$ Hz, $B=110$ Gauss
- $\Phi=3^\circ$ from crossed analyzer
- LN cooled InSb detector

SNR=253
MDL(1σ)=380 ppt

1σ=4.325 μV
Future Directions and Outlook of Chemical Trace Gas Sensing Technology
High power fiber-coupled QCL for NO detection

- LASER SOURCE EC-QCL (Daylight Solutions, Inc)
 - Tuning range 5.13-5.67 μm
 - Maximum tuning Rate 38 nm/sec
 - Highest optical power: ~250 mW
 - TE cooling, RT operation

Collaboration with: V. Spagnolo
Politecnico Bari and CNR-LIT³
Fiber coupled QCL and QEPAS detection system

- High coupling efficiency of laser output to fiber
- Beam size matching to QEPAS after collimation
- Aspheric lenses for both coupling and re-collimating.
- 86% coupling efficiency

FIBER
Material: AsSe$_3$.
- 22 µm core diameter
- Single mode operation
- FC-PC termination
- AR Coated.

Collaboration with: V. Spagnolo, Politecnico Bari and CNR-LIT3
Monitoring of Broadband Absorbers

- Freon 125 (C_2HF_5)
 - Refrigerant (leak detection)
 - Safe simulant for toxic chemicals, e.g. chemical warfare agents
- Acetone (CH_3COCH_3)
 - Recognized biomarker for diabetes
- TATP (Acetone Peroxide, $C_6H_{12}O_4$)
 - Highly Explosive
- Uranium Hexafluoride (UF_6)
Absorption spectrum of gas mixture under investigation and observed spectral features identification.

A. Nadezhdinskii et al, GPI, Moscow, March 2008

Also: G. Baldaccini et al., Nuovo Cimento 8, 203, 1986
QEPAS MDAL comparison with CRDS, ICOS & TDLAS

Minimum Detectable Absorption Loss (MDAL) $[\text{cm}^{-1}/\sqrt{\text{Hz}}]$ can be used for comparison of different techniques:

- Cavity Ring Down Spectroscopy (CRDS): $\sim 3 \times 10^{-11}$
- Integrated Output Spectroscopy (ICOS): $\sim 3 \times 10^{-11}$
- Multipass Gas Cell based TDLAS: $\sim 2 \times 10^{-11}$

- QEPAS (Sept 2009) MDAL (DFB 100mW): 1.9×10^{-8}
- QEPAS-OPBC MDAL (DFB 20 mW): 3.2×10^{-10}
- QEPAS-OPBC + μresonator (estimated): $\sim 7 \times 10^{-12}$

QEPAS-OPBC can be as sensitive as CRDS, ICOS and TDLAS as well as retain most of the merits of QEPAS
DFB QCL array performance

Emission spectrum of a DFB-QCL array
Pulsed operation (80kHz, 50ns) at room temperature
Grating coupling strength, |\(\kappa L|\approx10\)

Side-mode suppression of >20dB

Temperature tuning by DC current

Lee, Belkin, et al., APL 2007
Ultra-compact Diode Laser based Trace Gas Sensor
Summary & Future Directions of Laser based Gas Sensor Technology

- **Semiconductor Laser based Trace Gas Sensors**
 - Compact, tunable, and robust
 - High sensitivity (<10^-4) and selectivity (3 to 500 MHz)
 - Capable of fast data acquisition and analysis
 - Detected 14 trace gases to date: NH₃, CH₄, N₂O, CO₂, CO, NO, H₂O, COS, C₂H₄, H₂S, H₂CO, SO₂, C₂H₅OH, C₂HF₅ TATP and several isotopic species of C, O, N and H.

- **New Applications of Trace Gas Detection**
 - Environmental Monitoring (urban quality – NH3, H₂CO, NO, isotopic ratio measurements of CO₂ and CH₄, fire and post fire detection; quantification of engine exhausts)
 - Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
 - Medical & biomedical non-invasive diagnostics (NH₃, NO, N₂O and CH₃COCH₃)
 - Ultra-compact, low cost, robust sensors (CO and CO₂)

- **Future Directions and Collaborations**
 - Improvements of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadly wavelength tunable near and mid-IR intersubband and interband quantum cascade lasers
 - Further development of spectraphone technology
 - New applications enabled by novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCL (i.e. sensitive concentration measurements of broadband absorbers, in particular HCs, UF₆ and multi-species detection)
 - Development of optically gas sensor networks based on QEPAS and LAS
Merits of QEPAS based Trace Gas Detection

- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Low sensitivity to environmental acoustic noise
- Significant reduction of sample volume (< 1 mm³)
- Applicable over a wide range of pressures
- Rugged transducer-quartz monocystal, which can operate in a wide range of pressures and temperatures and is humidity insensitive
- Ultra-compact, rugged and low cost detection module (compared to other laser based sensor architectures)
QEPAS Performance for 13 Trace Gas Species (Sept. ‘09)

<table>
<thead>
<tr>
<th>Molecule (Host)</th>
<th>Frequency, cm(^{-1})</th>
<th>Pressure, Torr</th>
<th>NNEA, cm(^{-1})W/Hz(^{0.5})</th>
<th>Power, mW</th>
<th>NEC (τ=1s), ppmv</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O (N(_2))**</td>
<td>7306.75</td>
<td>60</td>
<td>1.9\times10(^{-9})</td>
<td>9.5</td>
<td>0.09</td>
</tr>
<tr>
<td>HCN (air: 50% RH)*</td>
<td>6539.11</td>
<td>60</td>
<td><4.3\times10(^{-9})</td>
<td>50</td>
<td>0.16</td>
</tr>
<tr>
<td>C(_2)H(_2) (N(_2))*</td>
<td>6523.88</td>
<td>720</td>
<td>4.1\times10(^{-9})</td>
<td>57</td>
<td>0.03</td>
</tr>
<tr>
<td>NH(_3) (N(_2))*</td>
<td>6528.76</td>
<td>575</td>
<td>3.1\times10(^{-9})</td>
<td>60</td>
<td>0.06</td>
</tr>
<tr>
<td>C(_2)H(_4) (N(_2))*</td>
<td>6177.07</td>
<td>715</td>
<td>5.4\times10(^{-9})</td>
<td>15</td>
<td>1.7</td>
</tr>
<tr>
<td>CH(_4) (N(_2)+1.2% H(_2)O)*</td>
<td>6057.09</td>
<td>760</td>
<td>3.7\times10(^{-9})</td>
<td>16</td>
<td>0.24</td>
</tr>
<tr>
<td>CO(_2) (breath ~100% RH)</td>
<td>6361.25</td>
<td>150</td>
<td>8.2\times10(^{-9})</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>H(_2)S (N(_2))*</td>
<td>6357.63</td>
<td>780</td>
<td>5.6\times10(^{-9})</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>CO(_2) (N(_2)+1.5% H(_2)O)*</td>
<td>4991.26</td>
<td>50</td>
<td>1.4\times10(^{-8})</td>
<td>4.4</td>
<td>18</td>
</tr>
<tr>
<td>CH(_2)O (N(_2);75% RH)*</td>
<td>2804.90</td>
<td>75</td>
<td>8.7\times10(^{-9})</td>
<td>7.2</td>
<td>0.12</td>
</tr>
<tr>
<td>CO (N(_2))</td>
<td>2196.66</td>
<td>50</td>
<td>5.3\times10(^{-7})</td>
<td>13</td>
<td>0.5</td>
</tr>
<tr>
<td>CO (propylene)</td>
<td>2196.66</td>
<td>50</td>
<td>7.4\times10(^{-8})</td>
<td>6.5</td>
<td>0.14</td>
</tr>
<tr>
<td>N(_2)O (air+5%SF(_6))</td>
<td>2195.63</td>
<td>50</td>
<td>1.5\times10(^{-8})</td>
<td>19</td>
<td>0.007</td>
</tr>
<tr>
<td>C(_2)H(_2)OH (N(_2))**</td>
<td>1934.2</td>
<td>770</td>
<td>2.2\times10(^{-7})</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>C(_2)HF(_5) (N(_2))***</td>
<td>1208.62</td>
<td>770</td>
<td>7.8\times10(^{-9})</td>
<td>6.6</td>
<td>0.009</td>
</tr>
<tr>
<td>NH(_3) (N(_2))*</td>
<td>1046.39</td>
<td>110</td>
<td>1.6\times10(^{-8})</td>
<td>20</td>
<td>0.006</td>
</tr>
</tbody>
</table>

* - Improved microresonator
** - Improved microresonator and double optical pass through ADM
*** - With amplitude modulation and metal microresonator

NNEA – normalized noise equivalent absorption coefficient.
NEC – noise equivalent concentration for available laser power and τ=1s time constant, 18 dB/oct filter slope.

For comparison: conventional PAS 2.2 (2.6)\times10\(^{-9}\) cm\(^{-1}\)W/√Hz (1,800; 10,300 Hz) for NH\(_3\)*. (**)

5.3 μm QCL based QEPAS Gas Sensor for NO detection

External Amplitude Modulation:

- QTF is used as a mechanical chopper at $f \approx 32\text{kHz}$
- No chirp associated with the laser current modulation
- High resolution mode-hop-free tuning is possible
High resolution EC-QCL based NO Spectrum

4.2% NO in N₂ at 600 Torr

- HITRAN 2005 (600 Torr, path: 1 cm)
- HITRAN 2005 (5 Torr, path: 1 cm)
- QEPAS measurement

Normalized QEPAS Amplitude [mV/mW]

Absorbance (base 10)

Wavenumber [cm⁻¹]