Development of a Real-Time Optical Sensor for Atmospheric Formaldehyde Monitoring

F.K. Tittel, J. Chen, S. So, L. Hoasan, R.F. Curl and M.P. Fraser

Rice University
Houston, TX

fkt@rice.edu
http://www.ruf.rice.edu/~lasersci/

- Motivation and Technology Issues
- Infrared Diode Laser-based Gas Sensor
- Formaldehyde Concentration Measurements in the Greater Houston Area
- Summary and Outlook

Motivation for Precision Monitoring of H_2CO

- **Precursor to atmospheric O_3 production**
- Pollutant due to incomplete fuel combustion processes
- Potential trace contaminant in industrial manufacturing products
- Medically important gas
H$_2$CO Detection in Ambient Air at 3.53 μm

- Concentration: (8.49 ± 0.57) ppbv
- Goodness of fit:
 - $\chi^2 = 3.4272 \times 10^{-10}$
 - $\sigma = \pm 1.852 \times 10^{-5}$
Map of the Greater Houston Area

Nine Days of Continuous HCHO Data
Five Days of Continuous HCHO Data at Channel View, TX

HCHO and O$_3$ Concentrations at Deer Park, TX for July 20-31, 2002
Environmental data at Deer Park, TX for July 20-31, 2002

HCHO Concentrations at Deer Park, TX for August 2-14, 2002
HCHO and O₃ Concentrations at Deer Park, TX for August 2-14, 2002

HCHO and O₃ Concentrations at Deer Park, TX for September 2-25, 2002
Current Development Highlights: “Plug-and-Pray” to “Plug-and-Play”

- Fiber Laser Seed Source
 - 60 ppb (16 MHz) absolute frequency stability over 24 hours
 - No pump diode laser dependency ($\Delta f, \Delta f'$)
 - <100 kHz linewidth (free-running)

- DFB Diode Laser Seed Source
 - 173 ppb (33 MHz) absolute frequency stability over 24 hours
 - 100 Hz frequency tuning accuracy (over 12 GHz [0.4 cm$^{-1}$])
 - <2 MHz linewidth (free-running)

- DFG Module
 - Rugged, close-coupling design
 - Clean, predictable near Gaussian spatial mid-IR beam
 - $<0.0003\%$ / h power stability ($\approx 1/1000$ of Fiber Amplifier Stability)
 - Self-compensating temperature induced drift (Residual <5.8 MHz/h)

Airborne High-Power DFG Based Trace Gas Sensor

[Diagram of DFG Stage and Multi-Pass Cell]
DFG Spatial Beam Propagation

Summary

- **Diode Laser Based Trace Gas Sensors**
 - Compact, tunable, robust (alignment insensitive), fieldable
 - High sensitivity (<2·10^{-4} to 10^{-3}) and selectivity (10–300 MHz)
 - Fast data acquisition and analysis
 - Detected trace gases: H₂CO, NH₃, CH₄, NO₂, N₂O, H₂O, CO₂,
 CO, NO, HCl, SO₂, C₂H₅OH, isotopic species of ¹²,¹³C,
 ¹⁶,¹⁷,¹⁸O, ³⁵,³⁷Cl

- **Applications in Trace Gas Detection**
 - Environmental monitoring: H₂CO, CO, CH₄ (EPA, NASA, NCAR, NOAA)
 - Industrial process control and chemical analysis
 - Medical diagnostics (NO, CO, CO₂, NH₃)

- **Future Directions**
 - Fiber lasers and amplifiers
 - Longer mid-IR wavelengths, with orientation patterned GaAs
 and QC lasers, detection of complex molecules