COMPACT QUANTUM CASCADE LASER BASED 13CO$_2$/12CO$_2$ ISOTOPIC RATIOMETER FOR FIELD MEASUREMENTS OF VOLCANIC GASES

F. K. Tittel1, D. Weidmann1, C. Roller1, R. F. Curl1, and K. Uehara2

1 Rice University
6100 Main Street, Houston, (TX, 77251, USA)

2 Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa (223-8522 Japan) and SORST Project, Japan Science and Technology Corporation
4-1-8 Honcho, Kawaguchi, Saitama (332-0012, Japan)

E-mail: Weidmann @rice.edu

High precision measurements of 13CO$_2$/12CO$_2$ are needed in a wide range of fields that include volcano emission studies [1-2], atmospheric chemistry, combustion diagnostics, medical diagnostics and biology. Currently we are developing a compact, field deployable quantum cascade laser based sensor to perform real time measurements with a precision of $\delta \sim 0.1^\circ/_{oo}$, using absorption spectroscopy. The initial design of this analyser will target the prediction of potential volcano activities, but can be useful in other trace gas sensing applications.

A thermoelectrically cooled, pulsed, single frequency quantum cascade laser will be employed as spectroscopic source, which is required for field deployment. The laser is designed to operate at 4.33 μm, where the P-branch of 12CO$_2$ overlaps the R-branch of 13CO$_2$ of the 00$^\circ$1-00$^\circ$0 transition. To reach a high precision delta value, the influences of temperature and pressure stabilities must be taken into account, as well as the water vapor collision broadening.