Applications of near and mid-infrared semiconducotor laser based trace gas sensors

F.K. Tittel, Y. Bahlkicic, A.A. Kosterev, R. F. Cato R. Lewicki, S. So and G. Wysoki
Rice Quantum Instus, Rice University, Houston, TX, USA
http://rce.rice.edu/lasers/

- Motivation: Wide Range of Chemical Sensing
- Fundamentals of Laser Absorption Spectroscopy
- New Laser Sensing Technologies
- Selected Application of Trace Gas Detection
- Quartz Enhanced L-PAS (NH₃, Freon 125 & acetone)
- Future Directions and Conclusions

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
- Agricultural Plants
- Combustion Sources and Processes (e.g. fire detection)
- Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
- Agriculture & Forestry, Livestock
- Environmental Monitoring
- Atmospheric Chemistry
- Volcanic Emissions
- Chemical Analysis and Industrial Process Control
- Petroleum, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
- Crew Health Maintenance & Life Support
- Applications in Health and Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Fundamentals of Laser Absorption Spectroscopy

Key Characteristics of mid-IR QCLs and ICL Sources

- Band - structure engineered devices
 - Laser wavelength is determined by laser design - MIR or MOCVD
 - No need for QC laser diodes (excitation)
- Compact, reliable, stable, long lifetime, and commercial availability
- Facile, P-type FET, simple mode (DMR) and multi-wavelength
- Spectral tuning range in the mid-IR
 - 4-5 cm⁻¹ (IR DFB) and 2-3 cm⁻¹ (EAM) at R = 10 GHz
 - 1.5 cm⁻¹ using injection current control
 - 10-20 cm⁻¹ using temperature control
 - 200 cm⁻¹ with an external grating element and with homogeneous modal active region design
- Nanosecond spectral linewidth
 - > 1 cm⁻¹ (< 1 ns, high frequency stabilization @ 1000 cm⁻¹); pulsed ~ 300 MHz (chirp from heating)
- High pulsed and cw powers at TEC/RINT temperatures
 - Pulsed peak power > 1.0 W; high temperature operation >250K
 - Average power levels: 1-300 mW (current wall plug = 5mW)
 - > 50 mW, TEC CW DFB at 1 and 305 AlGaAs, Proportion.
 - 300 mW (< 1 mm, conduction cooling)
 - ~ 300 mW (4.1 mm, conduction cooling, width)
 - > 300 mW (< 1 mm,版权声明,及商规)
- Q-factor of ~ 1000, ~ 150 mW/W (DFB) & 200 K, (Nazaretti)

Quartz Enhanced Photoacoustic Spectroscopy

From conventional PAS to QEPAS

Laser beam, power \(P \)

Modulated \((P \text{ or } \lambda) \text{ at } S \text{ or } f'\)

\[S = \frac{Q \alpha P}{f} \]

\[NNEA = \frac{a_{\text{max}} P}{\sqrt{f}} \left[\frac{\text{cm}^{-1} \times W}{\text{Hz}} \right] \]

Resonant at \(f \)

Quality factor \(Q \)
Quartz Tuning Fork (TF) as a Resonant Microphone
- Resonant frequency $f=32.8$ kHz
- Low loss, high Q factor $Q_f=125000$
- Piezoelectric required no transducer
- Miniature size
- Mass produced for cheap — low cost

Absorption Detection Module for QEPAS based Gas Sensor
- $\varnothing 0.41$ mm
- 10 mm
- Lens
- Excitation laser beam
- Quartz tuning fork electrodes

Alignment-free QEPAS Absorption Detection Module
- Quartz tuning fork
- Acoustic micro resonator

Merits of QE Laser-PAS based Trace Gas Detection
- High sensitivity (ppm to ppb gas concentration levels) and excellent dynamic range
- Immune to ambient and flow acoustic noise, laser noise and etalon effects
- Significant reduction of sample volume (<1 mm3)
- Applicable over a wide range of pressures
- Temperature, pressure and humidity insensitive
- Rugged and low cost (compared to other optical sensor architectures)

Trace Gas Sensing Examples

Motivation for NH$_3$ Detection
- Monitoring of gas separation processes
- Spacecraft related gas monitoring
- Monitoring NH$_3$ concentrations in the exhaust stream of NO$_x$ removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver dysfunctions)
Infrared NH₃ Absorption Spectra

QEPAS based Gas Sensor Architecture

Calibration and Linearity of QEPAS based NH₃ Sensor

NH₃ Measurements at an Oklahoma State University Research Feedyard

Biomarkers Present in Exhaled Human Breath

QCL based Quartz-Enhanced Photoacoustic Gas Sensor

More than 400 different molecules in breath; many with well defined biochemical pathways

Noise-equivalent absorption (NEA) coefficient δ=7.2×10⁻⁹ cm⁻¹/WHz⁻¹/²

NO (Wysocki)
QEPAS based Freon 125 and Acetone concentration measurements with a tunable 8.4 μm CW-EC-QCL

QEPAS concentration measurement of a Freon 125 (upper traces) and acetone mixture (lower traces) using 8.4 μm tunable gas sensors.

Minimum detection limit (1σ) of ~5 g/L was obtained for Freon 125 with an average laser power of 0.5 mW.

Wide tunable enables excellent molecular selectivity for broad band absorbers.

CW DFB QCL based QEPAS Ammonia Sensor operating at 1046.4 cm⁻¹

Future of Chemical Trace Gas Sensing

Wireless Sensor Networks for Gas Sensing

- Each point called "mote"
- Advantages?
 - Spatial resolution
 - Measure fluxes
- What is needed?
 - Low power
 - Low cost
 - Ultra miniature
 - Replicable
 - Autonomy

Miniature LAS CO₂ Sensor Board

USB

Detector

10 cm path

Laser Driver Board

Network Core

Sensor Core

1.3A Li-Ion Battery

(Attached to bottom)
Summary & Future Directions of QCL based Gas Sensor Technology

- Quantum and Interband Cascade Laser based Trace Gas Sensors
 - Compact, tunable, and robust
 - High sensitivity (×10^5) and selectivity (3 to 500 MHz)
 - Capable of fast data acquisition and analysis
 - Detected 13 trace gases to date: NH₃, CH₄, H₂O, CO₂, CO, NO, H₂-O, COS, C₂H₂, H₂S, CO₂, C₂H₆, CH₃OH, C₂H₄, and several isotopic species of C, O, N, and H

- New Applications of Trace Gas Detection
 - Environmental Monitoring (urban quality - H₂-O and isotopic ratio measurement of CO₂ and CH₄; fine detection and quantification of engine exhausts)
 - Industrial process control and chemical analysis (NO, NH₃, H₂O, and H₂S)
 - Medical & biomedical diagnostics (NO, NH₃, N₂-O, H₂CO and CH₁₂COCH₂)
 - Hand-held sensors and sensor network technologies (CO₂)

- Future Directions and Collaborations
 - Improve endurance of the existing sensing technologies using novel, thermoelectrically cooled, cw, high power, and broadband wavelength tuning mid-IR interband and interband quantum cascade lasers
 - Utilize novel broadly wavelength tunable quantum cascade lasers based on heterogeneous EC-QCLs (i.e. sensitive, concentration measurements of broadband absorbers; in particular VOCs, HCl and multi-species detection)
 - Development of optically gas sensor networks based on QEPAS and LAS