Recollections of Tycho Jaeger (1972-1980)

Infrared Technologies for Environmental Sensing: Present and Future Opportunities and Challenges

P.K. Ting, R.F. Curi, L. Dong, J. Dorf, A. A. Kosarev, R. Lewicki, and D. Thurman
Rice Quantum Institute, Rice University, Houston, TX, USA
http://see.rip.cr/taesr

Outline:
- Motivation: Chemical Sensing Applications
- Fundamentals of Laser Absorption Spectroscopy
- New Laser Sensing Technologies (QEPAS)
- Selected Applications of Trace Gas Detection
 - Quartz Enhanced Photoacoustic Spectroscopy (QEPAS)
 - NH3 Detection for Environmental Applications
 - Nitric Oxide Detection (LAS & Faraday Rotation Spectroscopy)
- Monitoring of Broadband Absorbers
- Future Directions of Laser based Gas Sensor Technology

Wide Range of Trace Gas Sensing Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants
 - Combustion Sources and Processes (e.g., fire detection)
 - Automobile, Truck, Aircraft and Marine Emissions
- Rural Emission Measurements
 - Agriculture & Forestry, Livestock
- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
- Chemical Analysis and Industrial Process Control
 - Petrochemical, Semiconductor, Nuclear Safeguards, Pharmaceutical, Metals Processing, Food & Beverage Industries
- Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
 - Applications in Biomedical and the Life Sciences
- Technologies for Law Enforcement and National Security
- Fundamental Science and Photochemistry

Sensitivity Enhancement Techniques for Laser Spectroscopy

- Optimum Molecular Absorbing Transition
 - Overtone or Combination Bands (NIR)
 - Fundamental Absorption Bands (MID-IR)
- Long Optical Pathlength
 - Multipass Absorption Cell (White, Herriot, Chemia)
 - Cavity Ringdown and Cavity Enhanced Spectroscopy
 - Open Path Monitoring (with & without retro-reflector): Standoff and Remote Detection
 - Fiber optic Evanescent Wave Spectroscopy
- Spectroscopic Detection Schemes
 - Frequency or Wavelength Modulation
 - Balanced Detection
 - Zero-air Subtraction
 - Phasoracoustic Spectroscopy
 - Laser Induced Breakdown Spectroscopy (LIBS)

Molecular Absorption Spectra within two Mid-IR Atmospheric Windows

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>IR LASER SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (% to ppt)</td>
<td>Optimum Wavelength, Power</td>
</tr>
<tr>
<td>Selectivity (Spectral Resolution)</td>
<td>Stable Single Mode Operation and Narrow Linewidth</td>
</tr>
<tr>
<td>Multi-gas Components, Multiple Absorption Lines and Broadband Absorbers</td>
<td>Mode Hop-free Wavelength Tunability</td>
</tr>
<tr>
<td>Directionality or Cavity Mode Matching</td>
<td>Beam Quality</td>
</tr>
<tr>
<td>Rapid Data Acquisition</td>
<td>Fast Time Response</td>
</tr>
<tr>
<td>Room Temperature Operation</td>
<td>High wall plug efficiency, no cryogenics or cooling water</td>
</tr>
<tr>
<td>Field deployable in harsh environments</td>
<td>Compact & Robust</td>
</tr>
</tbody>
</table>
Quartz Enhanced Photoacoustic Spectroscopy

First Report of PAS in 1880

Alexander Graham Bell’s "photophone" used a voice coil to modulate a mirror which transmitted sunlight to a receiver containing a selenium resistor.

Mature, Sept. 23, 1880, pp. 500-503

Resonant Photoacoustic Spectroscopy

Quartz Tuning Fork as a Resonant Microphone

Unique properties
- Extremely low internal losses:
 - Q=10,000 at 1 am
 - Q=100,000 in vacuum
- Acoustic quadrupole geometry
- Low sensitivity to external sound
- Large dynamic range (~10^5) - linear from thermal noise to breakdown deformation
- 300K noise: ~10^{-11} cm
- Breakdown: ~10^4 cm
- Wide temperature range: from 1.56K (superfluid helium) to ~700K
- Low cost (~$1)

Other parameters
- Resonant frequency: ~32.8 kHz
- Force constant: ~26000 N/m
- Electromechanical coefficient: ~7·10^{-4} C/N

QEPAS spectrophone

- Micro-resonator (mR) tubes
 - Must be close to QTF but not touch QTF (25-50 μm gap)
 - Optimum inner diameter 0.6 mm
 - Optimum micro-resonator tubes are 4.4 mm long (~λ/4<λ/2 for sound at 32.8 kHz)
 - Maximum SNR of QTF with mR tubes: ~30 (depending on gas composition and pressure)
Alignment-free QEPAS Absorption Detection Module

Merits of QEPAS based Trace Gas Detection

- Very small sensing module and sample volume (a few mm³)
- Extremely low dissipative losses
- Optical detector is not required
- Wide dynamic range
- Frequency and spatial selectivity of acoustic signals
- Rugged transducer – quartz monocrystal; can operate in a wide range of pressures and temperatures
- Immune to environmental acoustic noise; sensitivity is limited by the fundamental thermal noise $k_B T$ energy in the TF symmetric mode
- Absence of low-frequency noise: SNR scales as V_i, up to r=3 hours as experimentally verified
- QEPAS: some challenges
 - Responsivity depends on the speed of sound and molecular energy transfer processes
 - Sensitivity scales with laser power
 - Effect of H_2O
 - Cross-sensitivity issues

Recent Applications of mid-infrared Laser based Trace Gas Sensors

NIR QEPAS based multi-species sensor system

QEPAS Performance for 15 Trace Gas Species (May '10)

Motivation for NH₃ Detection

- Monitoring of gas separation processes
- Detection of ammonium-nitrate explosives
- Spacecraft related gas monitoring
- Monitoring NH₃ concentrations in the exhaust stream of NOₓ removal systems based on selective catalytic reduction (SCR) techniques
- Semiconductor process monitoring & control
- Monitoring of industrial refrigeration facilities
- Pollutant gas monitoring
- Atmospheric chemistry
- Medical diagnostics (kidney & liver diseases)
Mid-IR EC-QCL based AM-PAS Sensor for atmospheric NH₃ Detection

Preliminary NH₃ Data after Sensor Installation on the 100 m high Moody Tower Roof (UH campus)

QEPAS and PAS based NH₃ measurements with a 10.34μm DLS EC-QCL spectroscopic source

Important Biomedical Species

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula</th>
<th>Biological/Pathology Indication</th>
<th>Cancer wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>C₇H₉NO₂</td>
<td>Liver damage (inflammation, oxidative stress)</td>
<td>15.9 μm</td>
</tr>
<tr>
<td>Formalin</td>
<td>CH₂O</td>
<td>Cancerous tumors (100-1000 μm)</td>
<td>2.7 μm</td>
</tr>
<tr>
<td>Malic acid</td>
<td>MD</td>
<td>Nucleic acid synthesis activity, inflammatory and immune responses (HPO-400 μm)</td>
<td>8.3 μm</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>H₂O₂</td>
<td>Airway inflammation, oxidative stress (1-4 μm)</td>
<td>7.8 μm</td>
</tr>
<tr>
<td>Porphyrins</td>
<td>C₈H₈N₄S</td>
<td>Bacterial growth (100-1000 μm)</td>
<td>6.7 μm</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>CH₁₃NO₂</td>
<td>Oxidative stress, cancer</td>
<td>10.8 μm</td>
</tr>
</tbody>
</table>

QEPAS based NH₃ Gas Sensor Architecture

Real-time Breath Monitor Interface

Advantages of using CW DBS-QCL in the sensor architecture:
- Small laser package — system compactness,
- DBS-QCL room temperature operation,
- Performing SM spectroscopy at optimum modulation depth,
- Sensitive detection with 21 W/H.
Motivation for Nitric Oxide Detection

- Atmospheric Chemistry
- Environmental pollutant gas monitoring
 - NOx monitoring from automobile exhaust and power plant emissions
 - Precursor of smog and acid rain
- Industrial process control
 - Formation of oxynitride gates in CMOS Devices
- NO in medicine and biology
 - Important signaling molecule in physiological processes in humans and mammals (1998 Nobel Prize in Physiology/Medicine)
 - Treatment of asthma, COPD, acute lung rejection
- Photofragmentation of nitro-based explosives (TNT)

Motivation for Nitric Oxide Detection in Beijing 2008

- Environmental pollutant
 - Product of fossil fuel combustion process (automobile and power plant emissions)
 - Precursor of smog and acid rain

EC-QCL Based Faraday Rotation Spectrometer

- EC-QCL: Operating at 5.3μm – NO Fundamental Band
- 40cm–effective optical pathlength
- Routine/Real-time Extinction Rates ×10⁻⁴
- Not sensitive to water interference
- Sensitivity Not Limited by Interference Fringes
- Gas Cell Volume (~ 250mL)
- Easy and Robust Optical Alignment
- Continuous NO Monitoring (Absorption Line Locking enabled with cavity-loss free tuning using Germanium modulation at 50th harmonic)

Faraday Rotation Spectroscopy of Nitric Oxide

- 98 ppb NO on H2
- L = 5 m, P = 40 Torr
- TD = 1 s, SNR = 2 mL
- SNR = 200 Hz, SNR=1000 Gauss
- Q=0 from crossed analyzer
- LN cooled InGa detector
- 1σ=4.355 μV

Ethane absorption spectrum

- 4×10⁴ cm⁻¹

Future Directions and Outlook of Chemical Trace Gas Sensing Technology
Proposed QEPAS-OPBC Sensor Configuration

DFB diode laser
High reflectivity dielectric mirrors
Photodiode

PZT
QTF

Feedback electronics

Circulating power = Source power / (1-R)
Very conservatively, ×100

QEPAS MDAL Comparison with CRDS, ICOS & TDLAS

Minimum Detectable Absorption Loss (MDAL) [cm⁻¹/νHz] can be used for comparison of different techniques:

- Cavity Ring Down Spectroscopy (CRDS): ~ 3 × 10⁻⁹
- Integrated Output Spectroscopy (ICOS): ~ 3 × 10⁻⁹
- Multipass Gas Cell based TDLAS: ~ 2 × 10⁻⁹

- QEPAS (Sept 2009) MDAL (DFB 100 mW): 1.9 × 10⁻⁸
- QEPAS-OPBC MDAL (DFB 30 mW): 3.2 × 10⁻¹⁰
- QEPAS-OPBC + micro-resonator (estimated): ~ 7 × 10⁻¹²

QEPAS-OPBC can be as sensitive as CRDS, ICOS and TDLAS and retain most of the performance merits of QEPAS.

Laboratory air spectrum with OPBC-QEPAS system

Principle of resonant optothermoacoustic detection (ROTADE) sensor operation

- Modulated power source (such as a laser beam)
- Energy transfer (diffusion or thermal conductivity)
- Thermal expansion and resonant vibration
- Mechanical stress
- Electric response

Near infrared QTF and ROTADE images

- Transmitted Power: Tuning Fork Signal
- Tuning Fork Signal

Wireless Sensor Networks for Trace Gas Sensing

- Advantages?
 - Spatial resolution
 - Measure fluxes
 - Detect spikes before diffusion
- What is needed?
 - Ultra low power
 - Fast duty cycling capability
 - Low cost, Replicable
 - Ultra miniature
 - Autonomy (no consumables; auto.
 processing; auto. start)

To Internet via Base Station
Ultra-compact Diode Laser based Trace Gas Sensor

Key Characteristics of mid-IR QCL and ICL Sources - May 2010

- Band-structure engineered devices
- Mid-IR wavelength is determined by laser design
- MBE or MOCVD
- End infrared QCL emitter from 3.4 to 31 μm (Δλ/λ~0.2)
- Compact, reliable, stable, long lifetime, and commercial availability
- Fast (μs): single-mode QCL and multi-wavelength devices
- Spectral tunability range in the mid-IR
- EC-QCLs for QCLs and 2-3 μm for LASE-QCL-based laser
- 1.5 cm⁻¹ using injection current control for DFB devices
- 10-20 cm⁻¹ using temperature control for DFB devices
- >400 cm⁻¹ using an external cavity design and FP rings with heterogeneously broadened active region design
- Narrow spectral linewidth
- CW: 0.1 - 3 MHz, Δλ/λ~0.2 with frequency stabilization (0.0004 cm⁻¹)
- Pulsed: ~200 MHz
- High output and CW powers of QCLs at TEC/RT operation
- Pulsed and CW powers of 15 W and 3 W respectively, high temperature operation ~>700K
- >200 mW (CW) and 1 W (1545 nm)
- >200 mW (CW) and 1 W (1545 nm)

Tunable external cavity QCL based spectrometer

- Fine wavelength tuning
- PZT controlled EC-length
- PZT controlled grating angle
- QCL current control
- Monodetector coarse grating angle tuning
- Vacuum light QCL enclosure with built-in 2D lens positioner (TEC laser cooling + optional chilled water cooling)

Wide Wavelength Tuning of a 5.3μm EC-QCL

- Coarse wavelength tuning of 150 cm⁻¹ is performed by varying diffraction grating angle
- Power output is ~50 mW
- Access to Q(3)/Q transition of NO at 1075 cm⁻¹ for LMR spectroscopy

From conventional PAS to QEPAS

- Laser beam, power P
- Modulated (P or L) at f or f2
- SWAP RESONATING ELEMENT
- Standing wave
- NNEA = αP / √(hf)
- Resonant at f quality factor Q
- Bias (bias)