Portable Diode Laser-Based Sensor for $^{13}\text{CO}_2$/$^{12}\text{CO}_2$ Isotopic Ratio Measurements

M. Erdélyi, R.F. Curl and F.E. Tittel,
Rice University
Houston, TX
http://www.rice.edu/~lasersoi/

- Motivation and Technology Issues
- Infrared Diode Laser-based Gas Sensors
- Performance Characteristics of mid-IR Sensor
- Summary

Solfatara Crater near Pozzuoli (Naples)

Motivation for Isotopic Ratio Measurements

- Volcanic gas emission studies. (CO$_2$, H$_2$O, HCl, SO$_2$, HF, H$_2$S, CO), e.g. Colli Albani; Solfatara; Mammoth Mt., Long Valley Caldera, CA (north of L.A.)
- Atmospheric Chemistry [Monitoring of C$_3$ gases: CO$_2$, CO, CH$_4$...]
- Combustion diagnostics
- Non-invasive medical diagnostics (NO, CO, CO$_2$, NH$_3$)
- Biology (Photosynthesis)

Isotope Ratio Strategy

Isotopic ratios are stated in δ units defined for carbon as:

$\delta^{13}C = \left[\frac{[^{13}C/^{12}C]_{\text{sample}}}{[^{13}C/^{12}C]_{\text{std}}} - 1 \right] \times 1000 \%$

For carbon isotopes the most common standard is the Pee Dee Belemnite (PDB) dolomite carbon standard $[^{13}C/^{12}C]_{\text{PDB}} = 0.011237$

To detect a δ value with an accuracy of 1 $\%$ requires a measurement of absorbance at the 10^{-5} level when detecting two absorption lines of ~ equal intensity.

Isotope-Ratio Measurement Techniques

- Mass spectrometry (Precision: < 0.1 per mil)
- Gas chromatography (GC-IRMS)
- Nuclear magnetic resonance spectrometry
- FTIR Spectrometry (~0.1–0.2 per mil)
- Infrared absorption spectroscopy
 - Infrared heterodyne ratiometry
 - Laser optogalvanic spectroscopy
 - TDLAS spectroscopy: 3.35 μm (~0.3 mil)

Absorption Spectroscopy

Beer – Lambert’s Law

$A(v) = -\varepsilon(v) \cdot P \cdot L$

$\varepsilon(v)$: absorption coefficient [cm2 atm$^{-1}$]; L: path length [cm];
P: partial pressure [atm]

Molecular Absorption Coefficient

$\alpha(v) = C \cdot S \cdot g(v - v_0)$

C: total number of molecules of absorbing gas [cm$^{-3}$ atm$^{-1}$] [molecule cm$^{-3}$ atm$^{-1}$]
$g(v - v_0)$: normalized line shape function [cm$^{-1}$] (collision, Lorentzian, Voigt)
Future improvements

- Modular assembly, fiber coupled, ultra compact
- Source and detector (open path)
- Thermal management
- Solid state thermoelectric cooler
- Replace DFG source by 4.35 µm Sb diode or QC-DFB laser

Summary

- Diode Laser Based Trace Gas Sensors
 - Compact, tunable, robust (alignment insensitive), fieldable
 - High sensitivity (<0.1% to 10^-7) and selectivity (10-300 MHz)
 - Fast data acquisition and analysis
 - Detected trace gases: NH3, CH4, H2CO, NO2, N2O, H2O, CO2, CO, NO, HCN, SO2, CH3OH, isotopic species of 13C, 14CH4, 12CH3

- Applications in Trace Gas Detection
 - Environmental monitoring: H2CO, CO, CH4 (NASA, NCAR, NOAA, EPA)
 - Industrial process control and chemical analysis
 - Medical diagnostics (NO, CO, CO2)

- Future Directions
 - Fiber lasers and amplifiers
 - Longer mid-IR wavelengths with orientation patterned GaAs and QC lasers, detection of complex molecules
 - Cavity enhanced and cavity ringdown spectroscopy

HITRAN Simulation of Suitable CO2 Absorption Lines for Precision Δ13C Measurements

Wide Range of Gas Sensor Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants - Fenceline perimeter monitoring
 - Combustion Diagnostics
 - Automobiles
 - Rural Emission Measurements
 - Agriculture
 - Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions
 - Spacecraft and Planetary Surface Monitoring
 - Crew Health Maintenance & Life Support
 - Diagnostic and Industrial Process Monitoring
 - Petrochemical and Semiconductor Industry
 - Medical Diagnostics

Design Features of CW DFG Sensor

- Adequate Mid-infrared DFG Power
- High Sensitivity (ppb concentrations)
- High Selectivity (<30 MHz)
- Wavelength Tunable (Single or Multiple Trace Gases)
- Fast Data Acquisition and Analysis
- Room Temperature
- Non-invasive, Point or Remote Monitoring
- Compact, Lightweight and Robust
- Power Efficient
- No Consumables, Low Maintenance and Cost Effective
Portable Diode Laser-Based Sensor for 13CO$_2$/^{12}CO_2$ Isotopic Ratio Measurements

M. Erdelyi, R.F. Curl and F.K. Tittel,
Rice University
Houston, TX
http://www.rice.edu/~lasernet/

- Motivation and Technology Issues
- Infrared Diode Laser-based Gas Sensors
- Performance Characteristics of IR DFG Sensor
- Summary

Motivation for Isotopic Ratio Measurements

- Volcanic gas emission studies. (CO$_2$, H$_2$O, HCl, SO$_2$, HF, H$_2$S, CO), eg Colli Albani, Solfatara, Long Valley Caldera, CA
- Atmospheric Chemistry [Monitoring of C$_2$ gases: CO$_2$, CO, CH$_4$]
- Combustion diagnostics
- Non-invasive medical diagnostics (NO, CO, CO$_2$, NH$_3$)
- Biology (Photosynthesis)

Isotope Ratio Strategy

Isotopic ratios are stated in δ units defined for carbon as:
$$\delta^{13}C = \left(\frac{^{13}C/^{12}C}_{\text{sample}} / ^{13}C/^{12}C_{\text{std}} - 1 \right) \cdot 1000 \ (%_{\text{o}})$$
For carbon isotopes the most common standard is the Pee Dee Belemnite dolomite carbon standard $^{13}C/^{12}C_{\text{PDB}} = 0.011237$
To detect a δ value with an accuracy of 1 $\%_{\text{o}}$ requires a measurement of absorbance at the 10^{-6} level when detecting two absorption lines of ~ equal intensity.

Isotope-Ratio Measurement Techniques

- Mass spectrometry (Precision: < 0.1per mil)
- Gas chromatography (GC-IRMS)
- Nuclear magnetic resonance spectrometry
- FTIR Spectrometry (~0.1-0.2 per mil)
- Infrared absorption spectroscopy
 - Infrared heterodyne ratiometry
 - Laser optogalvanic spectroscopy
- TDLAS spectroscopy: 3.35 μm (~0.3mil)

12CO$_2$ and 13CO$_2$ HITRAN spectra at 4.3 μm
Temperature Effect on Isotopic-Ratio Measurements

Absorption spectroscopy requires lines with approximately the same intensity. Natural abundance ratio of 12CO/13CO is typically 1:90.

To reduce the 12CO line or intensity comparable with 13CO, a low Boltzmann factor is required. The lower energy level of the 13CO transition is significantly higher than the lower energy level of the 12CO line.

Temperature sensitivity

Special cell design

Absorption Spectroscopy

Beer - Lambert's Law

\[\varepsilon(v) \text{ - absorption coefficient (cm2 atm$^{-1}$)} \]

\[\text{I} = I_0 e^{-\varepsilon(v)L} \]

\[\varepsilon(v) = \frac{\varepsilon \sigma(v)}{N_p} \]

\[\text{Beer - Lambert's Law} \]

\[\text{Path length (cm)} \]

Molecular Absorption Coefficient

\[\alpha(v) = C \cdot S \cdot g(v) \]

C - total number of molecules of absorbing gas atm$^{-1}$ [molecule cm2 atm$^{-1}$]

S - molecular line intensity [cm molecule$^{-1}$]

$g(v)$ - normalized lineshape function [cm$^{-1}$] (Gaussian, Lorentzian, Voigt)

Spectral Coverage by Diode Lasers

Design Features of CW DFG Sensor

- Adequate Mid-infrared DFG Power
- High Sensitivity (ppb concentrations)
- High Selectivity (<30 MHz)
- Wavelength Tunable (Single or Multiple Trace Gases)
- Fast Data Acquisition and Analysis
- Room Temperature
- Non-invasive, Point or Remote Monitoring
- Compact, Lightweight and Robust
- Power Efficient
- No Consumables, Low Maintenance and Cost Effective

Proposed experimental set-up for DFG based carbon isotope-ratio analyzer

Implementation of Isotope-Ratio Strategy
Summary

- **Diode Laser-Based Trace Gas Sensors**
 - Compact, tunable, robust (alignment insensitive, fieldable)
 - High sensitivity (<2×10⁻⁶ to 10⁻⁵) and selectivity (10–300 MHz)
 - Fast data acquisition and analysis
 - Detected trace gases: NH₃, CH₄, H₂O, NO₂, NO, H₂O, CO₂, CO, NO, HCl, SO₂, C₂H₅OH, isotopic species of H₂, D₂, CO₂, HCl

- **Applications in Trace Gas Detection**
 - Environmental monitoring: H₂, CO, CO₂, CH₄ (NASA, NCAR, NOAA, EPA)
 - Industrial process control and chemical analysis
 - Medical diagnostics (NO, CO, CO₂)

- **Future Directions**
 - Fiber lasers and amplifiers
 - Longer mid-IR wavelengths with orientation patterned GaAs and QC lasers, detection of complex molecules
 - Cavity enhanced and cavity ringdown spectroscopy

Wide Range of Gas Sensor Applications

- Urban and Industrial Emission Measurements
 - Industrial Plants - Fenceline perimeter monitoring
 - Combustion Diagnostics
 - Automobile

- Rural Emission Measurements
 - Agriculture

- Environmental Monitoring
 - Atmospheric Chemistry
 - Volcanic Emissions

- Spacecraft and Planetary Surface Monitoring
 - Crop Health Maintenance & Life Support

- Diagnostic and Industrial Process Monitoring
 - Petrochemical and Semiconductor Industry

- Medical Diagnostics

Future Improvements

- Modular assembly, fiber coupled, ultra compact
- Source and detector (open path)
- Thermal management
- Solid state thermo-electric cooling
- Replace DFG source by 4.35 μm Sb diode or DFB-QC laser