Fortify® SCA
User Guide

Fortify 360, Version 2.6
May 2010

Copyright © 2010 Fortify® Software, Inc.
All Rights Reserved. Printed in the United States of America.

Fortify Software, Inc.
2215 Bridgepointe Pkwy.
Suite 400

San Mateo, CA 94404

Fortify Software, Inc. (“Fortify”) and its licensors retain all ownership rights to this document (the
“Document”). Use of the Document is governed by applicable copyright law. Fortify may revise this Document
from time to time without notice.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL FORTIFY
BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING
FROM ANY ERROR IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF
BUSINESS, PROFITS, USE OR DATA. FORTIFY RESERVES THE RIGHT TO MODIFY OR REMOVE ANY OF THE
FEATURES OR COMPONENTS DESCRIBED IN THIS DOCUMENT FROM THE FINAL PRODUCT, WITHOUT
NOTICE.

Fortify is a registered trademark of Fortify Software, Inc.
Brand and product names in this Document are trademarks of their respective owners.

Part Number: 1-113-2010-05-20-26-1

o =Y - [= Y Vii

Contacting Fortify SOftwWare. e e vii
Technical SUPPOTt. e e vii
Corporate HeadqUarters. ettt ettt et e e e e e vii
D STt L i e vii

About the Fortify 360 Documentation Set......... ...t i vii

INtroductionuvueii it i it i e e e 1

OVerview Of FOrtify SCA . ..o et e e e e e e 1

OVerview Of the ANalyzZersot et e e e e 1

Overview of the Analysis Phases e e e 3
Example of Analysis Commandst e 3
Memory ConSIderationsttt e et e ettt et e e e 3
Translation Phase 3
Fortify SCA Per Use License Only, Verifying Available Lines 4
ANaAlY SIS Phase . ..o e e 4
Verification of the Translation and Analysis Phase ..ot 5

Translating Java Code.ouuue it a s s s aa s aa s 6

Java Command Line SYNEax . ..o uuee ettt ettt ettt et 6

Java Command Line EXamplesuitiii e e e 7

Integrating with Ant using the Fortify Ant Compiler Adapter ..ot 7

Translating J2EE Applications e e e e e 8
Working With JSP Projects.o e 8
XML Configuration Files e e e 8
Call Grap . o e 9

Handling Resolution Warnings.ouuuiui e e e ieanas 9
Java Warnings. ... oo e e 9
J2EE WaaIMINES . .o ot ittt e ittt e ettt et e et e e e e e e 9

USINg FINdBUES. . . .o oo e e 10

Translating .NET Source Codeuuuuiiiuuteiinteineeianesranesiannsiannsessnsessnrerannnsss 11

Visual Studio NET . ..o e 11

Translating Simple .NET Applicationsot i 11

Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects..........c.coiuiiiiiieiiiiiiiienens. 12

Handling Resolution Warnings.ouiuiuii e 13
INE T I S . o ettt e e e e e e e 13
ASP.INET Warmings . ..ottt i e e e e e 14

Translating C/C++ Code.oiinni it e i s st i s aaananssesaanannnsssssnnnnnnnsssn 15

C and C++ Command Line SYNtaxouieirii it 15

FORTIFY Fortify SCA User Guide i

Cand C++ Command Line EXamples ... i 15

Integrating with MaKe i 15
Using the Fortify Touchless Build Adapterot i 15
Modifying a Makefile to Invoke Fortify SCA i e 16

Using Fortify Build MOnitor.o e e e 17
Fortify Build Monitor OVeIVIEW.t eae e 17
Configuring Fortify Build MOnitorot e i eae e 18
Monitoring Buildso e 19
Example of Monitoring a Project.o e 19

Visual Studio NE T e et e et e e e 20

ViSUal STUAIO 6.0, . ..ot e e e e e 20

Translating Other Languagesccoiiiiiiiiiir i iiiiiaei it iaaaaansseraanssnnssesaannnnnnsesss 21

Command Line Syntax for Other Languagesoui ittt i i i aeaeanes 21

Configuration ConSIAEIatioNnS. ettt ettt ettt et 22
Configuring Pythomn. o e e 22
Configuring ColdFUSION o.ut e e 22
Configuring the SQL EXteNSION. ou .ttt et 22
Configuring ASP/VBScript Virtual ROOtSoiui e i ae e 22
Other Language Command Line EXampleso 24
Example of Translating PL/SQL.ot e e 24
Example of Translating T-SQLo et e e e i 24
Example of Translating PHP o e 24
Example of Translating Classic ASP written with VBScript..............coooiii it 25
Example of Translating JavaScripto e e 25
Example of Translating VB Script File. e 25

Translating COBOL Code. u ittt et et e e e e e e e e aeae e 25
Supported Technologies. e e e 25
Preparing COBOL Source Files for Translationo 25
COBOL Command Line SYNtaxuene ettt a e e eene e 26
Auditing @ COBOL SCaAMottt ettt ettt e 26

Troubleshooting and SUPPOIt.coiiiiii i i et aasaaa e sannaannsesaannnnnnnnsns 27

TroUbleShOOtINg. . ..o\ e 27
Using the Log File to Debug Problems. i e e 27
Translation Failed MeSSsage.t 27
JSP Translation Problems.ttt it i i it e e e e 27
ASPX Translation Problems. e e e 28
C/C++ Precompiled Header Filesooiuiiiii e 29

Reporting Bugs and Requesting Enhancementsouiuieiii i 29

Appendix: ManagingPerUse Accountsci it iiii it iint e nnnernnns 30

About the Fortify SCA Per Use Edition.o e e et 30

Managing Your Portal USer ACCOUNL.ttt e e i enes 31

FORTIFY Fortify SCA User Guide ii

Changing your Passwordcuueii i e e e e 31

Purchasing Additional LInesoui it e e i 31
Transferring Lines.o e e e 31
Transferring Lines to a Machine with Internet ACCessviiiiiiiiiii e 32
Transferring Lines to a Machine without Internet AcCess.oviuiiiiiiiii i 32
Appendix: Command LinelInterface i i i i it et 34
Command Line OptionS. v ettt ettt ettt e e 34
L0000 L)01 () o 1 34
ANALYSIS OPUIONS .. ettt ittt ettt e e e e 36

7 00 0] o0 o) o 37

(000) U B 311153 103 a0 o1 5 (o) o -3 37
Java/J2EE QP iOMS. . .ttt e e e e 37

B30 D30 0 01T) o U P 38

Build Integration OPtions.ttt et e e e et e e e e e 38

D =T T 39
RUNEIME OPtiONS « o oottt et e e e e et et et e e e e e 40

Line Transfer Options i e e et et e 40

L0110 1<) o0 (o) -3 41
SPECHYINg Files. . o e 41
Appendix: Using the sourceanalyzer Ant Taskc.0iiiiiiiiiiinnn i innnnnns 43
Using the Ant sourceanalyzer TasK.o.iuiuiiii e e 43

DN o U0 0] 013 (T 44
sourceanalyzer Task OPtionsSt e e i 45
Appendix: Advanced Options ittt ittt it e ettt e 49
Creating a Filter File.o e e e et 49

Fof e o= B == (7 52
Using Properties to Control Runtime Optionsoieiuiiiei i ieenes 52
Specifying the Order of Propertiesooiuir it e 52
Appendix: Fortify SCAMemory TUNINGttt ettt et ia e nan e nnnns 59
Java Heap EXhaustion. e e e 59
0 Q0 L (517 V- 59
RESOIULION ..ttt e 59

Java Permanent Generation EXhaustionc.o.u it e i i e e 61

0 0] g (2T V. < 61
RESOIULION ..\t e e 61

Native Heap EXhaustiono e e i 62

0 o) g (2T V. < 62
RESOIULION . .ot e 62
Appendix: Acknowledgements e 63

FORTIFY Fortify SCA User Guide iii

FORTIFY’ Fortify SCA User Guide

This guide describes how to use Fortify® Source Code Analyzer.

Contacting Fortify Software

If you have questions or comments about any part of this guide, contact Fortify Software at:

Technical Support
650.358.5679
techsupport@fortify.com

Corporate Headquarters
2215 Bridgepointe Pkwy.

Suite 400

San Mateo, CA 94404
650.358.5600

contact@fortify.com

Web Site
http://www.fortify.com

About the Fortify 360 Documentation Set

The Fortify 360 documentation set contains installation, user, and deployment guides for various 360
components, including Fortify 360 Server and analyzers, as well as other documentation pertaining to the use of
Fortify 360.

Updated versions of the documentation and release notes that describe new features and known issues are also
available on the Fortify Customer Portal.

FORTIFY Fortify SCA User Guide vii

This chapter contains the following sections:

¢ Overview of Fortify SCA
e Overview of the Analyzers

e Overview of the Analysis Phases

Overview of Fortify SCA

Fortify Source Code Analyzer (SCA) is a set of software security analyzers that search for violations of security-
specific coding rules and guidelines in a variety of languages. The rich data provided by Fortify SCA language
technology enables the analyzers to pinpoint and prioritize violations so that fixes can be fast and accurate. The
analysis information produced by SCA helps you deliver more secure software, as well as making security code
reviews more efficient, consistent, and complete. This is especially advantageous when large code bases are
involved. The modular architecture of SCA allows you to quickly upload new, third party, and customer-specific
security rules.

At the highest level, using Fortify SCA involves:

1. Choosing to run SCA as a stand-alone process or integrating Fortify SCA as part of the build tool

2. Translating the source code into an intermediate translated format, preparing the code base for scanning by
the different analyzers

3. Scanning the translated code, producing security vulnerability reports
4. Auditing the results of the scan, either by transferring the resulting FPR file to Audit Workbench or Fortify 360
Server for analysis, or directly with the results displayed onscreen

Note: For information on transferring results to Audit Workbench and creating customer-specific security rules,
see the Audit Workbench User’s Guide.

Overview of the Analyzers

Fortify SCA comprises five distinct analyzers: data flow, control flow, semantic, structural, and configuration.
Each analyzer accepts a different type of rule specifically tailored to provide the information necessary for the
corresponding type of analysis performed. Rules are definitions that identify elements in the source code that
may result in security vulnerabilities or are otherwise unsafe.

Rules are organized according to the analyzer that uses them, resulting in rules that are specific to the data flow,
control flow, semantic, structural, and configuration analyzers. These rule categories are further divided to
reflect the category of the issue or type of information represented by the rule.

The installation process downloads and updates the set of rules used by SCA on your system. Fortify updates the
specific rules contained within the Fortify Secure Code Rulepack on a regular basis. The Fortify Customer Portal
offers updated rulepacks.

The following table lists and describes each Fortify source code analyzer.

FORTIFY Fortify SCA User Guide 1

Table 1: Fortify Source Code Analyzers

Analyzer

Description

Data Flow

The data flow analyzer detects potential vulnerabilities that involve tainted
data (user-controlled input) put to potentially dangerous use. The data flow
analyzer uses global, inter-procedural taint propagation analysis to detect
the flow of data between a source (site of user input) and a sink (dangerous
function call or operation). For example, the data flow analyzer detects
whether a user-controlled input string of unbounded length is being
copied into a statically-sized buffer, and detects whether a user controlled
string is being used to construct SQL query text

Control Flow

The control flow analyzer detects potentially dangerous sequences of
operations. By analyzing control flow paths in a program, the control flow
analyzer determines whether a set of operations are executed in a certain
order. For example, the control flow analyzer detects time of check/time of
use issues and uninitialized variables, and checks whether utilities, such as
XML readers, are configured properly before being used.

Semantic

The semantic analyzer detects potentially dangerous uses of functions and
APIs at the intra-procedural level Its specialized logic searches for buffer
overflow, format string, and execution path issues, but is not limited to
these categories. A call to any potentially dangerous function can be flagged
by the semantic analyzer. For example, the semantic analyzer detects
deprecated functions in Java and unsafe functions in C/C++, such as

gets ().

Structural

The structural analyzer detects potentially dangerous flaws in the structure
or definition of the program. By understanding the way programs are
structured, the structural analyzer identifies violations of secure
programming practices and techniques that are often difficult to detect
through inspection because they encompass a wide scope involving both
the declaration and use of variables and functions. For example, the
structural analyzer detects assignment to member variables in Java
servlets, identifies the use of loggers that are not declared static final, and
flags instances of dead code that will never be executed because of a
predicate that is always false.

Configuration

The configuration analyzer searches for mistakes, weaknesses, and policy
violations in an application's deployment configuration files. For example,
the configuration analyzer checks for reasonable timeouts in user sessions
in a web application.

FORTIFY’

Fortify SCA User Guide

Overview of the Analysis Phases

Fortify SCA performs source code analysis

¢ Build Integration: The first phase of source code analysis involves making a decision whether to integrate
SCA into the build compiler system.

¢ Translation: Source code gathered using a series of commands is translated into an intermediate format
which is associated with a build ID. The build ID is usually the name of the project being scanned.

¢ Analysis: Source files identified during the translation phase are scanned and an analysis results file, typically
in the Fortify project (FPR) format, is generated. FPR files are indicated by the . fpr file extension.

¢ Verification of the translation and analysis: Ensure that the source files were scanned using the correct
rulepacks and that no significant errors were reported.

Example of Analysis Commands
The following is an example of the sequence of commands you use to analyze code:

> sourceanalyzer -b <build id> -clean
> sourceanalyzer -b <build id> ...
> sourceanalyzer -b <build id> -scan -f results.fpr

Additional Confirmation for Fortify SCA Per Use

The following shows the additional sequence of commands when using Fortify SCA with a per use license to
analyze code:

Running this scan will deduct <number-of-lines> scan lines from
your account. Would you like to proceed? [y/n] y
<number-of-lines> scan lines deducted. <number-of-lines> remaining

Note: You can run the scan in silent mode, which suppresses the prompt and automatically deducts lines, by
using the command line option, —auth-silent, or by setting the com. fortify.sca.PPSSilent property to
true.

Memory Considerations

By default, Fortify SCA uses up to 600 MB of memory. If this is not sufficient to analyze a particular code base,
you might have to provide more memory in the scan phase. This can be done by passing the -xmx option to the
sourceanalyzer command.

For example, to make 1000 MB available to Fortify SCA, include the option -xmx1000M.
You can also use the SCA_VM_OPTS environment variable to set the memory allocation.

Note: Do not allocate more memory for Fortify SCA than the machine has available, because this will degrade
performance. As a guideline, assuming that no other memory-intensive processes are running, do not allocate
more than 2/3 of the available physical memory.

Translation Phase
The basic command line syntax for performing the first analysis phase, translating the files, is:
sourceanalyzer -b <build id> ...

The translation phase consists of one or more invocations of Fortify SCA using the sourceanalyzer command.
Abuild ID (-b <build id>)is used to tie together the invocations.

Subsequent invocations of sourceanalyzer add any newly-specified source or configuration files to the file list
associated with the build ID.

FORTIFY Fortify SCA User Guide 3

At the end of translation, you can use -show-build-warnings to list all warnings and errors that were
encountered during the translation process:

sourceanalyzer -b <build id> -show-build-warnings

To view all of the files associated with a particular build ID, use the -show-files directive:
sourceanalyzer -b <build id> -show-files

The following chapters describe how to translate different types of source code:

e Translating Java Code
e Translating .NET Source Code
e Translating C/C++ Code

¢ Translating Other Languages, such as ColdFusion, Classic ASP and JavaScript

Fortify SCA Per Use License Only, Verifying Available Lines

When using Fortify SCA with a per use license, the basic command line syntax to display the number of available
lines is:

sourceanalyzer -auth-query

For translated projects, display the total number of lines required to analyze the project using the -show-1loc
option. Fortify SCA counts lines of code (LOC) in a project that are executable, and excludes lines such as
comments and blank lines. The command to display the number of lines is:

sourceanalyzer -b <build id> -show-loc

If the number of available lines is less than the amount required to analyze the project, request lines from the
Per Use Portal account before continuing with the analysis phase. See “Managing Per Use Accounts” on page 30
for details.

Analysis Phase

This topic describes the syntax for the analysis phase: scanning the intermediate files created during the
translation and creating the analysis results file. The phase consists of one invocation of sourceanalyzer. You
specify the build ID and include the -scan directive and any required analysis or output options.

Note: By default, Fortify SCA includes the source code in the FPR.

The basic command line syntax for the analysis phase is:

sourceanalyzer -b <build id> -scan -f results.fpr

The command line syntax to silently analyze a project for Fortify SCA with a per use license is:
sourceanalyzer -b <build-id> -auth-silent -scan -f results.fpr

This runs the scan without the prompt to deduct the lines. For more information about the command line
options, see “Command Line Interface” on page 34.

Additional Steps for Fortify SCA Per Use

If you are using Fortify SCA with a per use license, Fortify SCA displays the number of lines required to scan the
project and prompts you before deducting the lines.

Enter y (yes) to continue with the scan as follows:

Running this scan will deduct <number-of-lines> scan lines from
your account. Would you like to proceed? [y/n] y
<number-of-lines> scan lines deducted. <number-of-lines> remaining

FORTIFY’ Fortify SCA User Guide 4

Note: You can re-scan a set of translated files. This allows you to scan the same project with different rules,
updated rulepacks, and/or scan settings without using additional scan lines.

Verification of the Translation and Analysis Phase

The Result Certification feature of Audit Workbench verifies that the analysis is complete. results
certificationResult certification shows specific information about the code scanned by Fortify SCA, including:

o List of files scanned, with file sizes and timestamps

e Java classpath used for the translation

¢ List of rulepacks used for the analysis

¢ List of Fortify SCA runtime settings and command line arguments

¢ List of errors or warnings encountered during translation or analysis

¢ Machine/platform information

To view result certification information, open the FPR file in Audit Workbench and select Tools - Project Summary
- Certification.

FORTIFY Fortify SCA User Guide 5

This chapter describes how to translate Java source code for analysis with Fortify SCA.
The following topics are included:

¢ Java Command Line Syntax

¢ Java Command Line Examples

¢ Integrating with Ant using the Fortify Ant Compiler Adapter
e Translating J2EE Applications

¢ Using FindBugs

Java Command Line Syntax

This topic describes the Fortify SCA command syntax for translating Java source code.
The basic command line syntax for Java is:
sourceanalyzer -b <build id> -cp <classpath> <file list>

With Java code, Fortify SCA can either emulate the compiler, which may be convenient for build integration, or
accept source files directly, which is more convenient for command line scans.

Note: For a description of all the options you can use with the sourceanalyzer command, see “Command Line
Interface” on page 34.

To have Fortify SCA emulate the compiler, enter:
sourceanalyzer -b <build id> javac [<translation options>]
To pass files directly to Fortify SCA, enter:

sourceanalyzer -b <build id> -cp <classpath> [<translation options>]
<files>|<file specifiers>

where:

<translation options>

are options passed to the compiler.
-cp <classpath>

specifies the classpath to be used for the Java source code. A classpath is a list of build directories and jar files.
The format is the same as expected by javac (colon or semicolon-separated list of paths). You can use Fortify
SCA file specifiers.

-cp "build/classes:lib/*.jar"
Note: If you do not specify the classpath with this option, the CLASSPATH environment variable is used.

For more information, see “Java/J2EE Options” on page 37. For information about file specifiers, see “Specifying
Files” on page 41.

FORTIFY Fortify SCA User Guide 6

Java Command Line Examples

To translate a single file named MyServlet.java with j2ee.jar on the classpath, enter:
sourceanalyzer -b MyServlet -cp lib/j2ee.jar MyServlet.java

To translate all . java files in the src directory using all jar files in the 1ib directory as a classpath:
sourceanalyzer -b MyProject -cp "lib/*.Jjar" "src/**/*.java"

To translate and compile the MyCode . java file while using the javac compiler:

sourceanalyzer -b mybuild javac -classpath libs.jar MyCode.java

Integrating with Ant using the Fortify Ant Compiler Adapter

Fortify SCA provides an Ant Compiler Adapter that you can use as an easy way to translate Java source files if
your project uses an Ant build file. This integration requires setting only two Ant properties, and can be done on
the command line without modifying the Ant build.xml file. When the build runs, Fortify SCA intercepts all
javac task invocations and translates the Java source files as they are compiled. Note that any JSP files,
configuration files, or any other non-Java source files that are part of the application need to be translated in a
separate step.

The following steps must be taken to use the Compiler Adapter:

¢ The sourceanalyzer executable must be on the system PATH.

¢ sourceanalyzer.jar (located in Core/1ib) must be on Ant's classpath.

e Thebuild.compiler property mustbe setto com.fortify.dev.ant.SCACompiler.
¢ The sourceanalyzer.buildid property must be set to the build ID.

The following examples show how to run an Ant build using the Compiler Adapter without modifying the build
file:

ant -Dbuild.compiler=com.fortify.dev.ant.SCACompiler

-Dsourceanalyzer.buildid=MyBuild
-1lib <install dir>/Core/lib/sourceanalyzer.jar

The -1ib option is only available in Ant version 1.6 or higher. In older versions you must set the CLASSPATH
environment variable or copy sourceanalyzer.jar to Ant's lib directory.

Alternatively, with Ant 1.6 or newer, the following shorthand can be used to run Ant with the compiler adapter:
sourceanalyzer -b <build-id> ant [ant-options]

By default, 600 MB of memory is allocated to Fortify SCA for translation. Increase the memory allocation when
using the Ant Compiler Adapter using the -Dsourceanalyzer.maxHeap option as follows:

ant -Dbuild.compiler=com.fortify.dev.ant.SCACompiler
-Dsourceanalyzer.buildid=MyBuild

-1ib <install directory>/Core/lib/sourceanalyzer.jar
-Dsourceanalyzer.maxHeap=1000M

FORTIFY Fortify SCA User Guide 7

Translating J2EE Applications

Translating J2EE applications involves processing Java source files, J2EE components such as JSP files,
deployment descriptors such as web . xm1, and configuration files such as st ruts-config.xml.

The steps include:
1. Translating the Java files.
Refer to the samples earlier in this chapter.
2. Translating the JSP files.
Refer to the sample below.
3. Processing the configuration files.
An example is:

sourceanalyzer -b my buildid "mydirectory/myfile.xml"

Working with JSP Projects

To translate JSP files, Fortify SCA requires that the JSP files are in a standard Web Application Archive (WAR)
layout If your source directory is already organized in a WAR layout, you can translate JSP files directly from the
source directory. If this is not the case, you may need to deploy your application and translate the JSP files from
the deployment directory:.

If your JSP files use any tag libraries, such as JSTL, ensure that the libraries’ jar files are in the WEB-INF/1ib
directory. Otherwise, the JSP compiler will not resolve the tag libraries and could produce incorrect results.

By default, Fortify SCA uses a version of the Jasper JSP compiler to compile JSP files into Java files during the
translation phase. However, if your web application is developed specifically for an application server, you must
use the JSP compiler for that application server when performing the translation.

To support this, Fortify SCA provides the following command line options:
e -appserver supported values: weblogic/websphere
¢ -—appserver-home
For Weblogic, the path to the directory containing the server/1ib directory
For WebSphere, the path to the directory containing the bin/JspBatchCompiler script
e -appserver-version supported values:
Weblogic versions 7, 8,9, and 10
WebSphere version 6
If you are using an application server that is not listed, use the default internal Fortify JSP compiler.
For example:

sourceanalyzer -b my buildid -cp "WEB-INF/lib/*.jar" "WEB-INE/**/*.jsp"

XML Configuration Files

Fortify SCA uses the web . xm1 configuration file during the project scan for the following information:

servlet tags

¢ servletmapping tags
o filter tags

¢ filter-mapping tags

e error-page tags

FORTIFY Fortify SCA User Guide 8

These tags are used to determine how the servlets and filers defined in the . java and . jsp files are connected.
If a struts servlet is detected, Fortify SCA extracts the configuration file to process the following top-level tags:

¢ form-beans
¢ global forwards
e action mappings

This data connects struts actions to follow how taint may propagate through an application.

Call Graph

Using data from the XML and struts configuration files, Fortify SCA builds a call graph to track potential taint from
servlet to servlet and to struts actions. For information about what is extracted from the configuration files, see
XML Configuration Files.

Handling Resolution Warnings

To see all warnings that were generated during your build, enter the following command before you start the
scan phase:

sourceanalyzer -b <build id> -show-build-warnings

Java Warnings

You may see the following warnings for Java:

Unable to resolve type...

Unable to resolve function...

Unable to resolve field...

Unable to locate import...

Unable to resolve symbol...

Multiple definitions found for function...
Multiple definitions found for class...

These warnings are typically caused by missing resources. For example, some of the . jar and class files
required to build the application have not been specified. To resolve the warnings, make sure that you have
included all of the required files that your application uses.

J2EE Warnings
You may see the following warnings for J2EE applications:

Could not locate the root (WEB-INF) of the web application. Please build your web
application and try again. Failed to parse the following jsp files:

<list of .jsp file names>

This warning displays because your Web application is not deployed in the standard WAR directory format or
does not contain the full set of required libraries. To resolve the warning, ensure that your web application is in
an exploded WAR directory format with the correct WEB-INF/1ib and WEB-INF/classes directories
containing all of the . jar and . class files required for your application. You should also verify that you have
all of the TLD files for all of the tags that you have and the corresponding . jar files with their tag
implementations.

FORTIFY Fortify SCA User Guide 9

Using FindBugs

FindBugs (http://findbugs.sourceforge.net) is a static analysis tool that detects quality issues in Java code. You

can run FindBugs with Fortify SCA and the results will be integrated into the analysis results file. Unlike Fortify
SCA, which runs on Java source files, FindBugs runs on Java bytecode. Therefore, before running an analysis on
your project, you should first compile the project and produce the class files.

To demonstrate how to run FindBugs automatically with Fortify SCA, compile the sample code, Warning.java,
as follows:

1. Go to the following directory:
<install directory>/Samples/advanced/findbugs
2. Enter the following command to compile the sample:
mkdir build
javac -d build Warning.java
3. Scan the sample with FindBugs and Fortify SCA as follows:
sourceanalyzer -b findbugs sample -java-build-dir build Warning.java
sourceanalyzer -b findbugs sample -scan -findbugs -f findbugs sample.fpr
4. Examine the analysis results in Audit Workbench:

auditworkbench findbugs sample.fpr
The output contains the following issue categories:

¢ Bad casts of Object References (1)

¢ Dead local store (2)

+ Equal objects must have equal hashcodes (1)
¢ Object model violation (1)

¢ Unwritten field (2)

e Useless self-assignment (2)

If you group by Analyzer, you can see that the Fortify SCA Structural analyzer produced one warning and
FindBugs produced eight The Object model violation warning produced by Fortify SCA on line 25 is
similar to the Equal objects must have equal hash codes warning produced by FindBugs. In addition,
FindBugs produces two sets of warnings (Useless self-assignment and Dead local store) aboutthe
same issues on lines 6 and 7. To avoid overlapping results, apply the filter. txt filter file by using the -
filter option during the scan. Note that the filtering is not complete because each tool filters at a different
level of granularity. To demonstrate how to avoid overlapping results, scan the sample code using filter.txt
as follows:

sourceanalyzer -b findbugs sample -scan -findbugs -filter filter.txt
-f findbugs_sample. fpr

FORTIFY Fortify SCA User Guide 10

This chapter describes how to use Fortify SCA to translate Microsoft Visual Studio .NET and ASP.NET
applications built with:

e .NET Versions 1.1 and 2.0
e Visual Studio .NET version 2003
e Visual Studio .NET version 2005

Fortify SCA works on the Common Intermediate Language (CIL), and therefore supports all of the .NET
languages that compile to CIL, including C# and VB .NET.

The following topics are included:

¢ Visual Studio .NET
¢ Translating Simple .NET Applications
e Translating ASPNET 1.1 (Visual Studio Version 2003) Projects

Note: The easiest way to analyze a .NET application is to use a Fortify Secure Coding Plug-in for Visual Studio,
which automates the process of gathering information about the project.

Visual Studio .NET

If you perform command line builds with Visual Studio .NET, you can easily integrate static analysis by wrapping
the build command line with an invocation of sourceanalyzer. For this to work, you must have the Secure
Coding Package for your version of Visual Studio installed.

The following example demonstrates the command line syntax for Visual Studio .NET:
sourceanalyzer -b my buildid devenv Samplel.sln /REBUILD debug

This performs the translation phase on all files built by Visual Studio. Be sure to do a clean or a rebuild so that all
files are included. You can then perform the analysis phase, as in the following example:

sourceanalyzer -b my buildid -scan -f results.fpr

Note: If your classic ASP/VBScript application uses virtual includes, for example,

<!--include virtual="/myweb/foo.inc”>

then you should specify the physical location of the myweb application by passing the following property value:

com.fortify.sca.ASPVirtualRoots=<semicoloon separated list of full paths to virtual
roots used>

For example, if the IIS virtual root /myweb is located at C: \webapps\myweb-folder, then your property value
should be:

-Dcom. fortify.sca.ASPVirtualRoots=c:\webapps\myweb-folder
If you add this line to the fortify-sca.properties file, you must escape the \ character, as in the following:

com. fortify.sca.ASPVirtualRoots=c:\\webapps\\myweb-folder

Translating Simple .NET Applications

You can also use Fortify SCA command line interface for processing .NET applications.

Prepare your application for analysis using one of the following methods:

FORTIFY Fortify SCA User Guide 11

Perform a complete rebuild of your project with the "debug" configuration enabled. Compiling your project
with debug enabled provides information that Fortify SCA uses for presenting the results.

Obtain all of the third party .d11 files, project output .d11 files, and corresponding . pdb files for your
projects. Note that Fortify SCA ignores any .d11 file passed as an input argument if the corresponding . pdb
file does not exist in the same folder. It is therefore imperative that you include all of the . pdb files for all
your project .d11 files.

Note: . pdb files are not required for third party libraries.

Run Fortify SCA to analyze the .NET application from the command line as follows:

For Visual Studio .NET Version 2003, enter:

sourceanalyzer -vsversion 7.1 -b MyBuild
-libdirs ProjOne/Lib;ProjTwo/Lib ProjoOne/bin/Debug ProjTwo/bin/Debug

where:
e MyBuild is the build identifier

e ProjoOne/Lib;ProjTwo/Lib is a semicolon-separated list of paths to folders or DLLs with third party
DLLs

e ProjOne/bin/Debug ProjTwo/bin/Debug are the output folders
For Visual Studio .NET Version 2005, enter:

sourceanalyzer -vsversion 8.0 -b MyBuild
-libdirs ProjOne/Lib;ProjTwo/Lib ProjOne/bin/Debug ProjTwo/bin/Debug

where:
e MyBuild is the build identifier

e ProjoOne/Lib;ProjTwo/Lib is a semicolon-separated list of paths to folders or DLLs with third party
DLLs

e ProjOne/bin/Debug ProjTwo/bin/Debug are the output folders

Note: Standard .NET DLLs used in your project are automatically picked up by Fortify SCA, so you do not
need to include them in the command line.

If your project is large, you can perform the translation phase separately for each output folder using the
same build ID, as follows:

sourceanalyzer -vsversion<version number> -b <build id>
-libdirs <paths> <folder 1>

sourceanalyzer -vsversion <version number> -b <build id>
-libdirs <paths> <folder n>

where:

e <version number> is either 7.1, 8.0, or 9.0

e <build id> isthe build ID

e <paths>isasemicolon-separated list of paths to folders or DLLs with third party DLLs

e <folder 1>and<folder n> are the output folders

Note: Fortify SCA requires the appropriate version of Visual Studio, even if you are using the command line

interface.

Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects

As discussed previously, Fortify SCA works on CIL generated by the .NET compilers. For ASPNET projects, web

components such as . aspx files need to be compiled before they can be analyzed. However, there is no standard

FORTIFY Fortify SCA User Guide 12

compiler for . aspx files. The .NET 1.1 runtime automatically compiles them when they are accessed from a
browser.

To facilitate the . aspx compilation phase, Fortify Software provides a simple tool that compiles all of the . aspx
files in your project. The tool is located in the Fortify installation directory at:

\Tools\fortify aspnet compiler\fortify aspnet compiler.exe
To analyze ASPNET 1.1 solutions:

1. Perform a complete rebuild of the solution.
2. For each of the web projects in the solution, delete the following folder:

$SYSTEMROOTS\Microsoft.NET\Framework\vl.1.4322\Temporary ASP.NET
Files\<web application name>

3. For each of the web projects in the solution, run the following command:
fortify aspnet_compiler <url_to_the web_ site> <source root of the web project>
where:

<url to the web site>isthe URL for your web site, such as
http://localhost/WebApp

<source root of the web project>is the source location of your web project, such as
<VS_project location>\WebApp

4. Perform the translation phase for the DLLs built in Step 1. Enter the following command using the same
build ID as in the following steps:

sourceanalyzer -b <build id> "<VS project location>***.d11l"

5. Perform the translation phase for the web components. For each of the web projects in the solution, enter
the following when you invoke sourceanalyzer:

sourceanalyzer -b <build id>
$SYSTEMROOTS\Microsoft.NET\Framework\vl.1.4322\Temporary ASP.NET
Files\<web application name>

6. Include the configuration files and any Microsoft T-SQL source files that you have:

sourceanalyzer -b <build id> "<solution root>***.config"
<"t-sqgl src>***.sql">

Note: These steps are all automated if you use the Fortify 360 Package for Visual Studio.

Handling Resolution Warnings

To see all warnings that were generated during your build, enter the following command before you start the
scan phase:

sourceanalyzer -b <build id> -show-build-warnings

.NET Warnings

You may see the following warnings for .NET:

Cannot locate class... in the given search path and the Microsoft .NET Framework
libraries.

These warnings are typically caused by missing resources. For example, some of the . DLL files required to
build the application have not been specified. To resolve the warnings, make sure that you have included all of
the required files that your application uses. If you still see a warning and the classes it lists are empty
interfaces with no members, you can ignore the warning. If the interface is not empty, contact Technical
Support

FORTIFY Fortify SCA User Guide 13

ASP.NET Warnings

You may see the following warnings for ASP.NET applications:
Failed to parse the following aspx files:

<list of .aspx file names>

This warning displays because your Web application is not deployed correctly or does not contain the full set of
required libraries, or it uses the Global Access Cache (GAC). If your application is a.NET version 1.1 application,
you may also have access issues from Microsoft IIS. Verify that you can access the application from a browser
without authentication or access errors. If your web application uses the GAC, you must add the . DLL files to the
project separately to ensure a successful scan. Fortify SCA does not load . DLL files from the GAC.

FORTIFY’ Fortify SCA User Guide 14

This chapter describes how to translate C and C++ source code for analysis with Fortify SCA.

C and C++ Command Line Syntax

The basic command line syntax for translating a single file is:
sourceanalyzer -b <build id> <compiler> [<compiler options>]
where:

e <compiler> isthe name of the compiler you want to use during a project build scan, such as gcc or c1.

e <compiler options> are options passed to the compiler that are typically used to compile the file.

C and C++ Command Line Examples

The following is a simple usage example:
To translate a file named helloworld. c using the gcc compiler, enter:
sourceanalyzer -b my buildid gcc helloworld.c

Note: This also compiles the file.

Integrating with Make
You can use either of the following methods to use Fortify SCA with Make:

e Using the Fortify Touchless Build Adapter
¢ Modifying a Makefile to Invoke Fortify SCA

Using the Fortify Touchless Build Adapter
The following section descibes the different methods for using the touchless build adaptor.

Using the sourceanalyzer Build Adaptor Command
To use the Fortify touchless build adapter to integrate with makefiles, run the following command:
sourceanalyzer -b <build id> touchless make

Fortify SCA runs the make command. When make invokes any command that Fortify SCA determines is a
compiler, the command is processed by Fortify SCA. Note that the makefile is not modified.

For information about informing Fortify SCA about specially-named compilers, see the
com.fortify.sca.compilers.* property in “Using Properties to Control Runtime Options” on page 52.

This method of build integration is not limited to make. Any build command that executes a compiler process
can be used with this system; just replace the 'make’ section of the above command with the command used to
run a build

Note: The Fortify touchless build adapter does not function correctly if:

¢ The build script invokes the compiler with an absolute path or if the build script overrides the executable
search path.

¢ The build script does not create a new process to run the compiler. Many Java build tools, including Ant,
operate this way.

FORTIFY Fortify SCA User Guide 15

Using the fortify Build Adaptor Command

Fortify 360 offers a convenient command that bundles together the translation and scan steps when you are
using touchless integration to analyze a C/C++ project. The command is as follows:

fortify [-b my build id] [-noscan] [-f my fpr name.fpr] build command

The command fortify build command serves as an equivalent to running the following commands:
sourceanalyzer -b my build id -clean

sourceanalyzer -b my build id touchless build command

sourceanalyzer -b my build id -scan -f cwd.fpr

If -f is not used, the name of the current working directory is used in naming the FPR, i.e. cwd. fpr.

If additional options are required for either the translation or analysis step (as described in Ch. 1), a couple of
environment variables are available:

FORTIFY BUILD OPTS
FORTIFY SCAN OPTS

For example, in a Bash shel], you would set these to the following values in order to acquire the information
needed byFortify Technical Support when they are helping you with an SCA-related ticket.

export FORTIFY BUILD OPTS=-debug\ -logfile\ translation.log
export FORTIFY SCAN OPTS=-debug\ -logfile\ scan.log
This would cause two additional files to be created, translation.log and scan.log, after the following is run:

fortify make

Modifying a Makefile to Invoke Fortify SCA

To modify a makefile to invoke Fortify SCA, replace any calls to the compiler, archiver, or linker in the makefile
with calls to Fortify SCA. These tools are typically specified in a special variable in the makefile, as in the
following example:

CC=gcc
CXX=g++
AR=ar

The step can be as simple as prepending these tool references in the makefile with Fortify SCA and the
appropriate options:

CC=sourceanalyzer -b mybuild gcc
CXX=sourceanalyzer -b mybuild g++
AR=sourceanalyzer -b mybuild ar

FORTIFY Fortify SCA User Guide 16

Using Fortify Build Monitor

This section describes how to use Fortify Build Monitor to scan C/C++ projects automatically during a build on

Windows and view the results. It includes examples that use sample projects provided with Fortify SCA.

This section covers the following topics:

Fortify Build Monitor Overview
Configuring Fortify Build Monitor

Monitoring Builds

Example of Monitoring a Project

Fortify Build Monitor Overview

The following options are available from the Fortify Build Monitor menu:

Table 2: Fortify Build Monitor Options

Option Description

Monitor Enables the monitoring. Build Monitor intercepts and translate the next
build on the machine.

Build Done Stops the monitor after the build is complete.

Scan Scans the code that was monitored during the build.

Scan Settings

Controls the rulepacks and memory settings.

Set Results Folder

Controls where Fortify SCA outputs the results.

Stay on Top

Keeps the Fortify Build Monitor window on top of other windows.

Minimize to Tray

Shows the Fortify Build Monitor as an icon in the task bar.

Exit

Closes the Fortify Build Monitor.

Show Messages

Shows or hides the messages in the lower area of the window. Messages
include Scan Messages, Errors, and Monitor Driver information. You can
click Detailed Messages at the bottom of the window.

Help

Displays online help.

Reset

Resets the Fortify Build Monitor to its beginning state.

FORTIFY’

Fortify SCA User Guide

17

Configuring Fortify Build Monitor

This section covers the following topics:

¢ Setting Up the Results Folder
¢ Setting Fortify SCA Scan Options

Setting Up the Results Folder

Fortify Build Monitor outputs results in FPR format to a local folder. You can change the output folder. Fortify
Build Monitor replaces the results each time a scan is performed. Results are not archived.

To change the results folder:

1. Select Action - Set Results Folder.
The Browse for Folder dialog displays.
2. Select a folder and click OK.

Fortify Build Monitor will output the results to the selected folder.

Setting Fortify SCA Scan Options
Fortify Build Monitor scans the project using Fortify SCA. You can adjust the following scan settings:

¢ Allocate memory: Increase or decrease the amount of memory allocated to Fortify SCA

¢ Fortify Secure Coding Rulepacks and custom rulepacks: Change which rulepacks Fortify SCA uses to analyze
the source code

¢ User: Only monitor builds run by the current user
To change the scan options:

1. Select Action - Scan Settings.
The Fortify Build Monitor: Scan Settings dialog displays.

N

To change the memory allocation, select a value.

Note: Entering an invalid option sets the memory to unlimited.
3. To add or remove rulepacks, click Rulepacks.

4. To view the Fortify SCA command line options, click Preview.

5. Click Done.

The Fortify SCA scan options are changed.

FORTIFY Fortify SCA User Guide 18

Monitoring Builds

For C/C++ projects and solutions on Windows, Fortify SCA includes the Fortify Build Monitor, which is a
graphical user interface tool that automates analysis during builds.

To analyze C/C++ source code builds on Windows:

1. Select Start - Program Files - Fortify Software - Fortify SCA - Build Monitor.
2. Click Monitor.

After the monitor initiates a green light icon displays.

Create a complete build of your project in your build environment.
Check that the build has finished successfully.

Return to the Fortify Build Monitor window and click Build Done.

Fortify SCA outputs the results to a subfolder, specify a name for the folder for the output If the folder already
exists, Fortify SCA cleans the folder before starting the scan.

7. Click Scan.

oS oW

Fortify SCA displays the results and saves an FPR file in the folder you specified.

Note: To view the results, open the FPR file in Audit Workbench or using the Secure Coding Package for Microsoft
Visual Studio.

Example of Monitoring a Project

This example for Windows users analyzes the sample C++ code project named gwik-smtpd. It uses Microsoft
Visual Studio and the Fortify Build Monitor.

To analyze the qwik-smtpd project:

1. Using Microsoft Visual Studio, open and build the qwik-smtpd project located in the Tutorial/C/source
directory:.

Select Start - Program Files - Fortify Software - Fortify SCA - Build Monitor.
Click Monitor.

Minimize the window.

AR S

In Microsoft Visual Studio, rebuild the project

Note: Since nothing in the project changed, you must use the rebuild option.
Check that build has finished successfully.

Return to the Fortify Build Monitor window and click Build Done.

Specify the location of the build output.

Click Scan.

© o N

Fortify SCA saves an FPR file in the folder you specified.
Note: To view the results, open the FPR file in Audit Workbench or using the Secure Coding Package for Microsoft
Visual Studio.

FORTIFY Fortify SCA User Guide 19

Visual Studio .NET

If you perform command line builds with Visual Studio .NET, you can easily integrate static analysis by simply
wrapping the build command line with an invocation of sourceanalyzer. For this to work, you must have the
Fortify Secure Coding Plug-in for your version of Visual Studio installed.

Consider the following example
sourceanalyzer -b my buildid devenv MyProject.sln /REBUILD

This performs the translation phase on all files built by Visual Studio. Be sure to do a clean or a rebuild so that all
files are included.

Visual Studio 6.0

If you perform command line builds with Visual Studio 6.0, you can integrate static analysis by wrapping the
build command line with an invocation of sourceanalyzer.

Consider the following example:
sourceanalyzer -b my buildid msdev MyProject.dsp /MAKE "MyProject DEBUG" /REBUILD

This performs the translation phase on all files built by the Visual Studio. Be sure to do a clean or a rebuild so
that all files are included, as described in your Visual Studio documentation.

FORTIFY Fortify SCA User Guide 20

This chapter describes how to translate other programming languages for analysis with Fortify SCA.
This section includes the following topics:

¢ Command Line Syntax for Other Languages

¢ Configuration Considerations

Command Line Syntax for Other Languages

This topic describes the Fortify SCA command syntax for translating other languages.
The basic command line syntax for other languages is:
sourceanalyzer -b <build id> <file list>

SQL Note: By default, files with the extension . sql are assumed to be T-SQL rather than PL/SQL on Windows
platforms. If you are using Windows and have PL/SQL files with the . sql extension, you should configure
Fortify SCA to treat them as PL/SQL. To change the default behavior, set the
com.fortify.sca.fileextensions.sqgl propertyin fortify-sca.properties to "TSQL" or "PLSQL".

Enter the following to perform translation on ColdFusion source code:

sourceanalyzer -b <build -id> -source-base-dir <dir> <files|file specifiers>
where:

e <build_id> specifies the build ID for the project

e <dir> specifies the root directory of the web application

e <files|file specifiers> specifies the CFML source code files

ColdFusion Note: Fortify SCA calculates the relative path to each CFML source file by using the
-source-base-dir directory as the starting point, then uses these relative paths when generating instance
IDs. If the entire application source tree is moved to a different directory, the instance IDs generated by a

security analysis should remain the same if you specify an appropriate value for
-source-base-dir.

For a description of all the options you can use with the sourceanalyzer command, see “Command Line
Interface” on page 34.

File specifiers are shown in the following table:

Table 3: File Specifiers

File Specifier Description

<dirname> All files found under the named directory or any subdirectories

<dirname>/**/ Any file named Example. js found under the named directory

Example.js or any subdirectories

<dirname>/*.]js Any file with the extension . js found in the named directory

<dirname>/**/*_.js Any file with the extension . j s found under the named directory
or any subdirectories

<dirname>/**/* All files found under the named directory or any subdirectories
(same as <dirname>)

FORTIFY Fortify SCA User Guide 21

Note: Windows and many Unix shells automatically try to expand arguments containing the '*' character, so file-
specifier expressions should be quoted. Also, on Windows, enter the backslash (\) instead of the forward slash

(/)-

Configuration Considerations
This section covers the following topics:

¢ Configuring Python

¢ Configuring ColdFusion

¢ Configuring the SQL Extension
¢ Configuring ASP/VBScript Virtual Roots

Configuring Python

Fortify SCA translates Python applications, and treats files with the extension . py as Python source code. In
order for SCA to translate Python applications and prepare the application for a scan, SCA searches any import
files for the application. SCA does not respect the PYTHONPATH environment variable which the Python
runtime system uses to find imported files, so this information should be given directly to SCA using the -
python-path argument In addition, some applications add additional import directories during runtime
initialization.
To add paths for additional import directories, use the sourceanalyzer command line option:

-python-path pathname

Note: SCA translates Python applications using all import files located in the directory path defined by the -
python-path pathname option. Subsequently, translation may take a significant amount of time to complete.

Configuring ColdFusion

In order to treat undefined variables in a CFML page as tainted, uncomment the following line in
sca_install_dir\Core\config\fortify-sca.properties:
#com.fortify.sca.CfmlUndefinedVariablesAreTainted=true

Doing so serves as a hint to the data flow analyzer to watch out for register-globals-style vulnerabilities.
However, enabling this property interferes with data flow findings in which a variable in an included page is
initialized to a tainted value in an earlier-occurring included page.

Configuring the SQL Extension

By default, files with the extension . sql are assumed to be T-SQL rather than PL/SQL on Windows platforms. If
you are using Windows and have PL/SQL files with the . sql extension, you should configure Fortify SCA to treat
them as PL/SQL. To change the default behavior, set the com. fortify.sca.fileextensions.sql property
in fortify-sca.properties to "TSQL" or "PLSQL".

Note: Fortify 360 v2.5 updates the PL/SQL parser to improve translation of PL/SQL source code. However, the
existence of two different parsers can make merging results from pre-v2.5 and postv2.5 difficult

To revert to the older version of the PL/SQL parser, add the following property to the fortify-
sca.properties file:

com. fortify.sca.UseOldPlsgl=true

Configuring ASP/VBScript Virtual Roots

Fortify SCA allows you to handle ASP virtual roots. For web servers that use virtual directories as aliases that
map to physical directories, SCA allows you to use alias.

FORTIFY Fortify SCA User Guide 22

For instance, you may have virtual directories named Include and Library which refer to the physical
directories C: \WebServer\CustomerOne\inc and C:\WebServer\CustomerTwo\Stuff respectively.

As an example, the ASP/VBScript code for an application using virtual includes, as follows:
<!--#include virtual="Include/Taskl/foo.inc”-->

The above ASP code refers to the actual directory, as follows:
C:\Webserver\CustomerOne\inc\Taskl\foo.inc

The real directory replaces the virtual directory name Include in that instance.

Accommodating Virtual Roots

In order to indicate to SCA what each virtual directory is an alias for, you must set a property of the form
com.fortify.sca.ASPVirtualRoots.name of virtual directory as partof your commandline
invocation of SCA in the following manner:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.name of virtual directory=<full path
to corresponding physical directory>

Note: On Windows, if the physical path has spaces in it, you must include the property setting in double-quotes:

sourceanalyzer "-Dcom.fortify.sca.ASPVirtualRoots.name of virtual directory=<full path
to corresponding *physical* directory>"

To expand upon the example in the previous section, the property value that you must pass along should be:
-Dcom. fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc”

-Dcom. fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerTwo\Stuff

Doing so causes the mapping of Include to its directory and Library to its directory.

When SCA encounters the include directive:

<!-- #include virtual="Include/Taskl/foo.inc" -->

SCA will first check to see if your project contains a physical directory named Include. If there is no such
physical directory, SCA looks through its own run-time properties and sees that:

-Dcom. fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerOne\inc"
This tells SCA that virtual directory Include is actually the directory:
C:\WebServer\CustomerOne\inc

This will cause SCA to look for the file:
C:\WebServer\CustomerOne\inc\Taskl\foo.inc

Alternately, if you choose to set this property in the fortify-sca.properties file, which is located in
<sca_install dir>\Core\config, you mustescape the \ character, as well as any spaces that appear in the
path of the physical directory:

com. fortify.sca.ASPVirtualRoots.Library=c:\\WebServer\\CustomerTwo\Stuff
com. fortify.sca.ASPVirtualRoots.Include=c:\\WebServer\\CustomerOne\inc

Note: The previous version of the ASPVirtualRoot property is still valid, which you may use on the SCA
commandline as follows:

-Dcom. fortify.sca.ASPVirtualRoots=C:\WebServer\
CustomerTwo\Stuff;C:\WebServer\CustomerOne\inc

This prompts SCA to search through the listed directories in the order specified when it is resolving a virtual
include directive.

FORTIFY Fortify SCA User Guide 23

Example: Using Virtual Roots
You have a file as follows:
C:\files\foo\bar.asp
You can specify this file by using the following include:
<!-- #include virtual="/foo/bar.asp">
Then you should set the virtual root as:

-Dcom. fortify.sca.ASPVirtualRoots=C:\files\foo

This will strip the /foo from the front of the virtual root If you do not specify foo in the ASPVirtualRoots

property, SCA will look in C:\files\bar.asp, and will fail
The sequence for specifying virtual roots are as follows:

1. Remove the first part of the path in the source

2. Replace the first parth of the path with the virtual root as specified on the command line.

Other Language Command Line Examples
This section includes the following examples:

¢ Example of Translating PL/SQL

+ Example of Translating T-SQL

¢ Example of Translating PHP

¢ Example of Translating Classic ASP written with VBScript
¢ Example of Translating JavaScript

¢ Example of Translating VB Script File

Example of Translating PL/SQL

The following example demonstrates syntax for translating two PL/SQL files:

sourceanalyzer -b MyProject x.pks y.pks

The following example demonstrates how to translate all PL/SQL files under the sources directory:

sourceanalyzer -b MyProject "sources/**/*.pks"

Example of Translating T-SQL

The following example demonstrates syntax for translating two T-SQL files:

sourceanalyzer -b MyProject x.sql y.sql

The following example demonstrates how to translate all T-SQL files under the sources directory:
sourceanalyzer -b MyProject "sources***, sqgl"

Note: This example assumes the com. fortify.sca.fileextensions.sql propertyin fortify-
sca.properties is setto "TSQL".

Example of Translating PHP
To translate a single file named MyPHP. php, enter:

sourceanalyzer -b mybuild "MyPHP.php"

FORTIFY’ Fortify SCA User Guide

24

Example of Translating Classic ASP written with VBScript
To translate a single file named MyASP. asp, enter:

sourceanalyzer -b mybuild "MyASP.asp"

Example of Translating JavaScript

To translate all JavaScript files under the scripts directory, enter:

sourceanalyzer —-b mybuild "scripts/*.js"

Example of Translating VB Script File
To translate a VB file named myApp . vb, enter:

sourceanalyzer -b mybuild "myApp.vb"

Translating COBOL Code

This section contains the following topics:

¢ Supported Technologies

¢ Preparing COBOL Source Files for Translation
¢ COBOL Command Line Syntax

¢ Auditing a COBOL Scan

Note: In order to use SCA to scan COBOL, you must have a specialized Fortify License specific for COBOL
scanning capabilities. Contact Fortify for more information about scanning COBOL and the necessary license
required.

Supported Technologies

Fortify SCA supports IBM Enterprise COBOL for IBM z/0S and is compatible with the following systems:
« CICS

e [MS

¢ DB/2 embedded SQL

e IBM WebSphere MQ

Preparing COBOL Source Files for Translation

Fortify SCA runs only on the supported systems listed in the Fortify System Requirements data sheet, not on
mainframe computers. This means that before you can scan a COBOL program, you must copy the following
program components to the system running Fortify SCA:

¢ The COBOL source code
¢ All copybook files used by the COBOL source code
o All SQL INCLUDE files referenced by the COBOL source code

Preparing COBOL Source Code Files

If you are retrieving COBOL source files from a mainframe without .COB or .CBL file extensions (which is
usually the case for COBOL filenames), then you must use the following command line:

-noextension-type COBOL <directory-file-path>

FORTIFY Fortify SCA User Guide 25

Specify the directory and folder with all COBOL files as the argument to SCA, and SCA will process all the files in
that directory and folder without any need for COBOL file extensions.
Preparing COBOL Copybook Files

Fortify SCA does not identify copybooks by extension. All copybook files should therefore retain the names used
in the COBOL source code COPY statements.

COBOL Command Line Syntax

Free-format COBOL is the default translation and scanning mode for Fortify SCA. The basic syntax for translating
a single free-format COBOL source code file is:

sourceanalyzer -b <build-id>
The basic syntax for scanning a translated free-format COBOL program is:

sourceanalyzer -b <build-id> -scan -f <FPR file name>

Working with Fixed-Format COBOL

Fortify SCA also supports fixed-format COBOL. When translating and scanning fixed-format COBOL, both the
translation and scanning command lines must include the - fixed-format command line option. For example,
the translation line syntax would look like:

sourceanalyzer -b <build-id> -fixed-format
And the scanning line syntax would look like:
sourceanalyzer -b <build-id> -scan -fixed-format -f <FPR file name>

If your COBOL code is IBM Enterprise COBOL, then it is most likely fixed format. If the COBOL translation
command appears to hang indefinitely, terminate the translation by typing Ctrl-C several times, and repeat the
translation command with the "-fixed-format" parameter.

Searching for COBOL Copybooks

Use the copydirs command line option to direct Fortify SCA to search a list of paths for copybooks and sQL
INCLUDE files. For example, the command line syntax would look like the following:

sourceanalyzer -b coboltest -copydirs c:\cobol\copybooks

Auditing a COBOL Scan

After using the command line to scan the application, you can upload the resulting FPR file to Audit Workbench
or Fortify 360 Server and audit the application’s issues.

Fortify SCA does not currently support custom rules for COBOL applications.

FORTIFY Fortify SCA User Guide 26

This chapter contains the following topics:

¢ Troubleshooting
¢ Reporting Bugs and Requesting Enhancements

Troubleshooting

This section contains the following troubleshooting topics:
¢ Using the Log File to Debug Problems

e Translation Failed Message

e |JSP Translation Problems

¢ ASPX Translation Problems

e (C/C++ Precompiled Header Files

Using the Log File to Debug Problems

If you encounter warnings and problems when you run Fortify SCA, re-run Fortify SCA using the -debug option.
This generates a file named sca. log in the following directory:

e On Windows: C:\Documents and Settings\<username>\Local Settings\Application
Data\Fortify\sca5.0\1log

¢ On other platforms: SHOME/ . fortify/sca5.0/1log

Email the sca. 1og file as a zip file to techsupport@fortify.com for further investigation.

Translation Failed Message

If your C/C++ application builds successfully but you see one or more “translation failed” messages when
building with Fortify SCA, edit the <install directory>/Core/config/fortify-sca.properties fileto
change the following line:

com.fortify.sca.cpfe.options= --remove unneeded entities --suppress vtbl
to
com.fortify.sca.cpfe.options=-w --remove unneeded entities --suppress vtbl

Re-run the build to print the errors encountered by the translator. If the output indicates an incompatibility
between your compiler and the Fortify translator, send your output to Fortify Technical Support for further
investigation.

JSP Translation Problems

Fortify SCA uses either the builtin or your specific application server's JSP compiler to translate JSP files into
Java files for analysis.

If the JSP parser encounters problems when Fortify SCA is converting JSP files to Java files for analysis, you will
see a message similar to the following:

Failed to translate the following jsps into analysis model. Please see the log file for
any errors from the jsp parser and the user manual for hints on fixing those
<List of JSP file names>

This typically happens due to one or more of the following reasons:

FORTIFY Fortify SCA User Guide 27

¢ The web application is not laid out in a proper deployable WAR directory format
¢ You are missing some JAR files or classes required for the application

¢ Some tag libraries or their definitions (TLD) are missing from your application
To obtain more information about the problem, perform the following steps:

1. Open the Fortify SCA log file in an editor.

2. Search for the strings Jsp parser stdout: and Jsp parser stderr:.
These errors are generated by the JSP parser that was used. Resolve the errors and rerun Fortify SCA.

For more information about scanning J2EE applications, see “Translating J2EE Applications” on page 8.

ASPX Translation Problems

Fortify SCA compiles ASPX files to DLLs for analysis as follows:

¢ Ifyou are using .NET 2.0 or later and Visual Studio 2005, using the Microsoft aspnet_compile compiler

e Ifyou are using .NET 1.1 and Visual Studio 2003, trying to fetch ASPX files one at a time from the web site
The compilation step can fail if:

¢ You have access or authentication problems with accessing the web application

¢ You are missing some required DLLs

In either case, you will see a message similar to the following:

Failed to translate the following aspx files into analysis model. Please see the log
file for any errors from the aspx precompiler and the user manual for hints on fixing
those.

<List of ASPX file names>

If you are using the plug-in, enable plug-in debugging and examine the plug-in log file for any errors generated
by the ASPX precompiler.

If you are using the command line tool, fortify aspnet compiler, you should see the error messages on the
console.

If you still cannot determine the cause of the problem, try to access some of the failed ASPX files from your
browser and see what kind of errors display. If you see messages such as cannot locate assembly, ensure
that you have the missing DLLs and rerun Fortify SCA.

If you can access the failed ASPX files from the browser, but Fortify SCA still fails to scan it, contact Fortify
Technical Support for additional help.

For more information about scanning ASP.NET applications, see “Translating ASP.NET 1.1 (Visual Studio Version
2003) Projects” on page 12.

FORTIFY Fortify SCA User Guide 28

C/C++ Precompiled Header Files

Some C/C++ compilers support a feature termed “precompiled header files,” which can speed up compilation.
Some compilers' implementations of this feature have subtle side-effects. When the feature is enabled, the
compiler may accept erroneous source code without warnings or errors. This can result in a discrepancy
where Fortify SCA reports translation errors even when your compiler does not.

If you use the precompiled header feature of your compiler, make sure your source code compiles cleanly by
disabling precompiled headers and doing a full build.

Reporting Bugs and Requesting Enhancements

Feedback is critical to the success of this product To request enhancements or patches, or to report bugs, send
an email to Technical Support at:

techsupport@fortify.com

Be sure to include the following information in the email body:

e Product: Fortify SCA

¢ Version Number: To determine the version number, run the following:
sourceanalyzer -version

¢ Platform: (such as PC)

¢ 0S: (such as Windows 2000)

When requesting enhancements, include a description of the feature enhancement.

When reporting bugs, provide enough details for the issue to be duplicated. The more descriptive you are, the
faster we can analyze and fix the issue. Also include the log files, or the relevant portions of them, from when the
issue occurred.

FORTIFY Fortify SCA User Guide 29

This chapter covers the following topics:

About the Fortify SCA Per Use Edition
Managing Your Portal User Account

Transferring Lines

About the Fortify SCA Per Use Edition

The Fortify SCA Per Use edition analyzes source code by the number of source code lines in a project Your
company purchases lines of code (LOC) packs from Fortify Software. The lines are stored in an account on the
Per Use Portal When you want to use Fortify SCA to analyze source code, you transfer lines from the online
account to your local instance. Once transferred those lines are unlocked and appear as “available lines”.
Transferred lines can only be used by the instance of Fortify SCA that requested them.

Fortify SCA deducts lines for each project you analyze. When you run out of lines, you must get additional lines
before you can scan another project. Transferring lines and creating a request file for transfers requires the
following:

Company account on the Per Use Portal with available LOCs
User name and password for the Per Use Portal
Internet access

A Fortify SCA Per Use edition installed on your build machine

Note: Transfer lines from the Per Use Portal to an instance of Fortify SCA only. Transferring unused lines back to
the Per Use Portal or between Fortify SCA instances is not supported.

Figure 1: Per Use Portal
Fortify Per Use Account

Manage Profile

User Portal
Transfer Lines

Download Softwarej

Fortify SCA
Per Use Edition

FORTIFY Fortify SCA User Guide 30

Managing Your Portal User Account

To use the Fortify SCA Per Use edition you must have a user account on the Fortify Per Use Portal This account
allows you to request lines.

The Per User Portal administrator configures the user accounts and provides the Fortify SCA Per Use edition
license key. When the administrator sets up an account, the default password is automatically emailed to you.

Your user profile includes:
¢ Your username (email address) and password
¢ Contact information, such as your telephone number

¢ Record of lines allocated to your user account

Changing your Password

When the administrator sets up your account, the Fortify Software portal sends you an email that contains a
default password and a link to the Fortify Per Use Portal This section explains how to log into the site and update
your password.

To change your password:

1. Open the link in the email or enter the following URL:
https://per-use.fortify.com

2. Enter your username, which is your email address where you received a default password, and the
password.

Click Customer Detail.
Enter a new password.
Confirm new password.
Click Save.

AN

Purchasing Additional Lines

Fortify Software technical support representative can add lines to an existing account Under some
circumstances the technical support representative can also transfer lines back into the main account

A technical support representative can only add lines if:

e You are alicensed user of Fortify SCA Per Use edition
¢ Your company has an account on the Fortify Per Use Portal
¢ You have a user account

e You are authorized to add lines to the account

Transferring Lines

This section explains how to transfer lines from the Per Use Portal account to Fortify SCA. The following is
required to transfer lines:

¢ Fortify SCA Per Use edition is installed on a build machine
¢ You have an account on the Per Use Portal, http://per-use.fortify.com.
¢ Your company has scan lines available in the account

Note: To purchase lines, contact a Fortify Software technical support

Transfer lines using one of the following methods:

FORTIFY Fortify SCA User Guide 31

e Transferring Lines to a Machine with Internet Access

e Transferring Lines to a Machine without Internet Access

Transferring Lines to a Machine with Internet Access

Users with Fortify SCA Per Use edition clients that have internet access can send requests to transfer lines from
the per use account to their local client. If the lines are available, the lines are deducted from the account and
transferred directly to the client

After the transfer, the per use account shows the lines allocated. The local client shows the lines as available.
To request lines:

1. Enter the sourceanalyzer command with the following option:
sourceanalyzer —-auth-request

2. Enter the information, including the number of lines, per user account user name, and password.

If the lines you requested are available, they are automatically transferred to your client.

Transferring Lines to a Machine without Internet Access

Users of offline Fortify SCA instances must manually generate a request file, transfer the file to a computer with
Internet access, log into the portal, and upload the request file. They must then download and install the
corresponding response file to transfer lines from the account to Fortify SCA.

After the response file is created, the account shows the lines as allocated. However the lines are not available
on Fortify SCA until after the response file is downloaded and installed.

To transfer lines manually:

1. Generating a Request for Lines
2. Uploading the Request for Lines
3. Installing the Line Certificate

Generating a Request for Lines

For users of Fortify SCA that do not have internet access, generate a request file that contains the number of
lines that you want to allocate.

To generate a request file:

1. Enter the sourceanalyzer command with the following option:
sourceanalyzer -auth-gen-request <request-file-name>

2. Follow the prompts to enter the request information.

A request file is created in the directory where you ran the command.

Uploading the Request for Lines

When you upload a request file and the account has the lines available, a certificate file is created. The requested
number of lines are deducted from the account To complete the transfer the user downloads the certificate and
installs it

To generate a line response file:

1. Copy the request file to a computer with internet access.
2. Login to the Per Use Portal, http://per-use.fortify.com.
Note: Your user name is your email address.

3. Click Request Lines.

FORTIFY Fortify SCA User Guide 32

4. Click Browse and locate the request file.
5. Click Upload.
After the request file is processed, a transaction ID (Txn ID) displays.
6. Click the transaction ID to download the certificate file to your local host.

Installing the Line Certificate
For offline Fortify SCA instances, manually install the certificate to add lines.
To transfer lines using the certificate file:

1. Copy the certificate to the machine where Fortify SCA is installed.
2. Enter the sourceanalyzer command with the following option:
sourceanalyzer -auth-import-response <response-file-name>

When the process completes a message displays the number of lines available.

FORTIFY’ Fortify SCA User Guide

33

This appendix describes the Command Line options available for Fortify Source Code Analyzer (Fortify SCA).

Command Line Options

This section lists and describes Fortify SCA command line options:

Output Options

Analysis Options

Python Option
ColdFusion Options
Java/]J2EE Options

.NET Options

Build Integration Options
Runtime Options

Line Transfer Options

Other Options

Output Options

The following table describes the output options.

Table 4: Output Options

Output Option

Description

-append

Appends results to the file specified with - £. If this option is not
specified, Fortify SCA adds the new findings to the FPR file, and
labels the older result as previous findings. To use this
option, the output file format mustbe . fpr or . fvdl. For
information on the - format output option, see the description
in this table.

Note: When —append is passed to SCA and the output file
specified with the -f option contains the results of an earlier
scan, the resulting FPR contains the issues from the earlier
scan as well as issues from the current scan. The build
information and program data (lists of sources and sinks)
sections are also merged.

The engine data section, which includes rule pack information,
command line options, system properties, warnings and
errors, and other information about the execution of
sourceanalyzer (as opposed to information about the
program being analyzed), is not merged, in part because there
is no way to meaningfully merge this data from multiple scans.
Because engine data is not merged with —append, Fortify does
not certify results generated with

—append.

In general, —append should only be used when it is not
possible to analyze an entire application at once.

FORTIFY’

Fortify SCA User Guide

34

Table 4: Output Options

Output Option

Description

-build-label <label>

The label of the project being scanned. The label is not used by
Fortify SCA but is included in the analysis results.

-build-project <project>

The name of the project being scanned. The name is not used
by Fortify SCA but is included in the analysis results.

-build-version <version>

The version of the project being scanned. The version is not
used by Fortify SCA but is included in the analysis results.

-f <file>

The file to which results are written. If you do not specify an
output file, the output is written to the terminal

-format <format>

Controls the output format Valid options are fpr, fvdl, text,
and auto. The defaultis auto, which selects the output format
based on the file extension.

Note: If you are using result certification, you must specify the
fpr format See the Audit Workbench User’s Guide for
information on result certification.

-html-report

Creates an HTML summary of the results produced. The output
format must be . £pr. The report file is given the same base
name as the results output file.

Note: The HTML summary and the summary through Audit
Workbench display differing number of issues. This is in part
due to differing methodology for categorizing HIGH and LOW
issues between the two types of reports. For a more detailed
summary report of issues, use the ReportGenerator utlity
in the SCA bin directory.

FORTIFY’

Fortify SCA User Guide

35

Analysis Options

Table 5: Analysis Options

The following table describes the analysis options.

Analysis Option

Description

-disable-default-rule-
type <type>

Disables all rules of the specified type in the default
rulepacks.Can be used multiple times to specify multiple rule
types.

Where the value of type is the XML tag minus the suffix “Rule”.
For example, use DataflowSource for DataflowSourceRule
elements. You can also specify specific sections of
characterization rules, such as Characterization:Controlflow,
Characterization:Issue, and Characterization:Generic.

Type is case-insensitive.

—-encoding

Specifies the encoding. SCA allows scanning a project that
contains different encoded source files. To work with a multi-
encoded project, you must specify the —encoding option at
the translation step, when SCA first reads the source code file.
This encoding is remembered in the build session, and is
propagated into the FVDL file.

-filter <file name>

Specifies a results filter file. For information about filter files,
see “Creating a Filter File” on page 49.

-findbugs

Enables FindBugs analysis for Java code. The Java class
directories must have been specified with the -java-
build-dir option, described in “Java/J2EE Options” on
page 37.

-no-default-issue-rules

Disables rules in default rulepacks that lead directly to issues.
Still loads rules that characterize the behavior of functions.
Note: This equivalent to disabling the following rule types:
DataflowSink, Semantic, Controlflow, Structural, Configuration,
Content, Statistical, Internal, and Characterization:Issue.

-no-default-rules

Specifies not to load rules from the default rulepacks. Fortify
SCA processes the rulepacks for description elements and
language libraries, but no rules are processed.

-no-default-source-rules

Disables source rules in the default rulepacks.
Note: Characterization source rules are not disabled.

-no-default-sink-rules

Disables sink rules in the default rulepacks.
Note: Characterization sink rules are not disabled.

-disable-source-

Source files are not included in the FPR file.

[<file>|<directory>]

rendering

-quick Scans the project in Quick Scan Mode, using the fortify-
sca-quickscan.properties file. By default, this scan
searches for high-confidence, high-severity issues. For more
information about Quick Scan Mode, see the Audit Workbench
User’s Guide.

-rules Specifies a custom rulepack or directory. Can be used multiple

times to specify multiple rulepack files. If you specify a
directory, all of the files in the directory with the .bin and
.xml extensions are included.

FORTIFY’

Fortify SCA User Guide

36

Table 5: Analysis Options

Analysis Option

Description

—scan

Causes Fortify SCA to perform analysis for the specified build
ID.

Python Option

The following table describes the ColdFusion option.

Table 6: ColdFusion Options

Python Option

Description

-python-path <path name>

Specifies the path for additional import directories. By default,
SCA uses the default PYTHONPATH variable on your system
when searching for Python import files. However, some
applications add additional import directories during runtime
initialization. Use this option to specify additional import
directories.

ColdFusion Options

The following table describes the ColdFusion option.

Table 7: ColdFusion Options

ColdFusion Option

Description

-source-base-dir

The web application’s root directory.

-source-archive

The application’s source archive repository. You must include
the -scan and -f options to use this option.

Java/J2EE Options

The following table describes the Java/]J2EE options.

Table 8: Java/J2EE Options

Java/J2EE Options

Description

-appserver

Specifies the application server for processing JSP files:
weblogic or websphere.

-appserver-home

Specifies the application server’s home.

For Weblogic, this is the path to the directory containing the
server/1ib directory.

For WebSphere, this is the path to the directory containing the
JspBatchCompiler script

-appserver-version

Specifies the version of the application server.
For Weblogic, valid values are 7, 8, 9, and 10.
For WebSphere, the valid value is 6.

FORTIFY’

Fortify SCA User Guide

37

Table 8: Java/J2EE Options

Java/J2EE Options

Description

-cp <classpath>,
-classpath <classpath>

Specifies the classpath to use for analyzing Java source code.
The format is same as javac: a colon or semicolon-separated list
of paths. You can use Fortify SCA file specifiers.

Note: If you do not specify the classpath with this option, the
CLASSPATH environment variable is used.

-extdirs <dirs>

Similar to the javac extdirs option, accepts a colon or
semicolon-separated list of directories. Any jar files found in
these directories are included implicitly on the classpath.

-java-build-dir

Specifies one or more directories to which Java sources have
been compiled. Must be specified for FindBugs results, as
described in “Analysis Options” on page 36.

-source <version>

Indicates which version of the JDK the Java code is written for.
Valid values for versionare1.3,1.4,1.5and 1.6.The
defaultis 1. 4.

-sourcepath Specifies the location of source files which will not be included
in the scan but will be used for name resolution. The
sourcepath is like classpath, except it uses source files rather
than class files for resolution.

.NET Options

The following table describes the .NET options.

Table 9: .NET Options

.NET Options

Description

-libdirs <dirs>

Accepts a colon or semicolon-separated list of directories
where system DLLs are located.

-dotnet-sources
<directory name>

Specifies where to look for source files for additional
information. This option is automatically passed from the
Fortify SCA plug-ins and Audit Workbench but when you are
running SCA manually, you must provide it yourself.

This option causes SCA to attempt to find any .NET classes,
enums, or interfaces that are not explicitly declared in the
compiled project.

-vsversion <version>

Specifies Visual Studio version. Valid values for version are
7.1 for Visual Studio Version 2003 and 8. 0 for Visual Studio
Version 2005, and the default valueis 7. 1.

Build Integration Options
The following table describes the build integration options.

FORTIFY’ Fortify SCA User Guide

38

Table 10: Build Integration Options

Build Integration Options

Description

-b <build_id>

Specifies the build ID. The build ID is used to track which files
are compiled and combined to be part of a build and later to
scan those files.

-bin <binary>

Used with —scan to specify a subset of source files to scan.
Only the source files that were linked in the named binary at
build time are included in the scan. Can be used multiple times
to specify the inclusion of multiple binaries in the scan.

—exclude <file pattern>

Removes files from the list of files to translate.

For example: sourceanalyzer -cp "**/*.jar
"kx/x" _exclude "**/Test.java"

Note: The -exclude option works when input files are
specified on the command line; it does not work with compiler
integration.

—nc

When specified before a compiler command line, Fortify SCA
processes the source file but does not run the compiler.

Directives

The following directives can be used to list information about translation steps that have been taken. Only one

directive can be used at a time and cannot be used in conjunction with normal translation or analysis steps.

Table 11:
Directives Description
-clean Deletes all Fortify SCA intermediate files and build

records. When a build ID is also specified, only files and
build records relating to that build ID are deleted.

-show-binaries

Displays all objects that were created but not used in
the production of any other binaries. If fully integrated
into the build, it lists all of the binaries produced.

-show-build-ids

Displays a list of all known build IDs.
Note: This option may erase build IDs generated by
previous versions of Fortify SCA.

-show-build-tree

Displays all files used to create binary and all files
used to create those files in a tree layout If the -bin
binary option is not present, the tree is displayed for
each binary.

Note: This option can generate an extensive amount
of information.

-show-files

Lists the files in the specified build ID. When the -bin
option is present, displays only the source files that
went into the binary.

-show-build-warnings

Use with -b <build id> to show all errors and
warnings from the translation phase on the console.
Note: These errors and warnings display in the results
certification panel of Audit Workbench.

FORTIFY’

Fortify SCA User Guide

39

Runtime Options

The following table describes the runtime options.

Table 12: Runtime Options

Runtime Options

Description

-auth-silent

Available on Fortify SCA Per Use edition only.

Suppresses the prompt that displays the number of lines the
scan requires to analyze the source code. With this option, the
lines are automatically deducted.

Note: If the scan requires more lines than are available, the
scan fails with an error indicating how many additional lines
are required.

-64

Runs Fortify SCA under the 64-bit JRE. If no 64-bit JRE is
available, Fortify SCA fails.

-logfile <file name>

Specifies the log file that is produced by Fortify SCA.

-quiet

Disables the command line progress bar.

-verbose

Sends verbose status messages to the console.

-Xmx <size>

Specifies the maximum amount of memory used by Fortify
SCA. By default, it uses up to 600 MB of memory (-Xmx 600M),
which can be insufficient for large code bases. When specifying
this option, ensure that you do not allocate more memory than
is physically available, because this degrades performance. As a
guideline, assuming no other memory intensive processes are
running, do not allocate more than 2/3 of the available
memory.

Lin

e Transfer Options

The Fortify SCA Per Use edition has the following line transfer options. Table 13 describes the options to show
the number of available lines and to transfer lines from the Per Use Portal account to a local instance of Fortify
SCA.

Table 13: Line Transfer Options

Option

Description

-—auth-gen-request

<request-file-name>

Creates a file that contains a request for lines.

Note: You must manually upload the request file to the Per Use
Portal to receive a response file that allocates lines to the
Fortify SCA instance.

—auth-query

Shows the number of lines available.

-—auth-request

Sends arequest to transfer lines from Per Use Portal account to
the Fortify SCA instance. This option requires internet access.
Note: If the account has insufficient lines, the request fails.

—auth-import-response
<response-file-name>

Installs a response file that allocates lines to the Fortify SCA
instance.

Note: The file can only be installed on the instance that
generated the request

FORTIFY’

Fortify SCA User Guide

40

Table 13: Line Transfer Options

Option Description
-show-loc Use with -b build_id to determine how many lines of code
were translated. This option returns the total number of lines
required to analyze the project
Other Options

The following table describes other options.

Table 14: Other Options

Other Options

Description

@<filename>

Reads command line options from the specified file.

-encoding
<encoding name>

Specifies the source file encoding type. This option is the same
as the javac encoding option.

-h, -?, -help

Prints this summary of command line options.

-version

Displays the version number.

-debug

Enables debug mode which is useful during troubleshooting.

-build-migration-map
<old fpr file>

Runs the InstancelD mapper at the end of a scan.

Specifying Files

File specifiers are expressions that allow you to easily pass a long list of files to Fortify SCA using wildcard
characters. Fortify SCA recognizes two types of wildcard characters: '*' matches part of a filename, and '**'
recursively matches directories. You can specify one or more files, one or more file specifiers, or a combination
of files and file specifiers.

<files> | <file specifiers>

File specifiers can take the following forms:

Table 15: File Specifiers

File Specifier

Description

<dirname>

All files found under the named directory or any subdirectories

<dirname>/**/Example.java

Any file named Example. java found under the named
directory or any subdirectories

<dirname>/*java

Any file with the extension . java found in the named directory

<dirname>/**/*java Any file with the extension . java found under the named
directory or any subdirectories
<dirname>/**/* All files found under the named directory or any subdirectories

(same as dirname)

FORTIFY’

Fortify SCA User Guide

41

Note: Windows and many Unix shells automatically try to expand arguments containing the '*' character, so file-
specifier expressions should be quoted. Also, on Windows, the backslash character (\) may be used as the
directory separator instead of the forward slash (/).

File specifiers do not apply to C or C++ languages.

FORTIFY’ Fortify SCA User Guide 42

The sourceanalyzer Ant task provides a convenient way to integrate Fortify SCA into your Ant build. As
discussed in Translating Java Code, translation of Java source files that are part of an Ant build is most easily
accomplished using the SCA Compiler Adapter, which automatically captures input to javac task invocations. The
sourceanalyzer task provides a convenient and flexible way to accomplish other translation tasks and to run
analysis.

This section describes how to use the sourceanalyzer Ant task and provides an example of a sample build file
with a self-contained analysis target.rs. It contains the following topics:

¢ Using the Ant sourceanalyzer Task
¢ Antproperties

e sourceanalyzer Task Options

Using the Ant sourceanalyzer Task

As with the SCA Compiler Adapter; using the sourceanalyzer task requires sourceanalyzer.jar tobeon
Ant's classpath, and the sourceanalyzer executable to be on the PATH.

The first step to using the sourceanalyzer taskis to include a t ypedef in the build. xml file as follows:
<typedef name="sourceanalyzer" classname="com.fortify.dev.ant.SourceanalyzerTask"/>

Note: Only Ant 1.6 and higher supports top-level typede £ of the sourceanalyzer task. For Ant 1.5 and lower,
include the typedef in the target where the sourceanalyzer task is used.

Once this typedef is included, targets can be defined that invoke the sourceanalyzer task to perform
translation and analysis operations exactly as if running sourceanalyzer from the command line. The
sourceanalyzer task syntax is similar to that of the command line interface, but Ant fileset and path primitives
can be leveraged.

The following is an example of a snippet from an Ant build.xml file which provides a target users can call to

generate Fortify SCA results for the project This snippet assumes that the targets clean and compile and the
path jsp.classpath are defined elsewhere in the file. It also uses verbose and log to create a separate Fortify
SCA log file for the build.

<available classname="com.fortify.dev.ant.SourceanalyzerTask"
property="fortify.present"/>

<property name="sourceanalyzer.buildid" value="mybuild"/>

<!-- For debugging in a separate Fortify SCA log file -->

<property name="fortify.debug" value="false" />

<property name="fortify.verbose" value="false" />

<mkdir dir="${code.build}/log" />

<mkdir dir="${code.build}/audit" />

<tstamp/>

<target name="fortify" if="fortify.present">

<typedef name="sourceanalyzer"
classname="com. fortify.dev.ant.SourceanalyzerTask"/>

<!-- call clean to ensure that all source files are recompiled -->
<antcall target="clean"/>

<!-- call the compile target using the SCA Compiler Adapter to -->
<!-- translate all source files-->

FORTIFY’ Fortify SCA User Guide 43

<antcall target="compile">

<!-- Log SCA in separate file -->

<param name="com.fortify.sca.Debug" value="${fortify.debug}" />
<param name="com.fortify.sca.Verbose" value="${fortify.verbose}" />
<param name="com.fortify.sca.LogFile"
value="${code.build}/log/S${sourceanalyzer.buildid}-${DSTAMP}-
${TSTAMP}.log" />

<param name="build.compiler"
value="com.fortify.dev.ant.SCACompiler" />

</antcall>
<!-- capture all configuration files in WEB-INF directory -->
<echo>sourceanalyzer ${web-inf}</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}">
<fileset dir="${web-inf}">
<include name="**/* properties"/>
<include name="**/* _ xml"/>
</fileset>
</sourceanalyzer>
<!-- translate all jsp files-->
<echo>sourceanalyzer ${basedir} jsp</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}">
<fileset dir="${basedir}">
<include name="**/* jsp"/>
</fileset>
<classpath refid="jsp.classpath"/>
</sourceanalyzer>
<!-- run analysis -->
<echo>sourceanalyzer scan</echo>
<sourceanalyzer buildid="${sourceanalyzer.buildid}"
scan="true"
resultsfile="issues.fpr"

/ >
</target>

Ant properties

Any Ant property that begins with com. fortify is relayed to the sourceanalyzer task via -D. For example,
setting the com. fortify.sca.ProjectRoot property results in -

Dcom. fortify.sca.ProjectRoot=<value> being passed to the sourceanalyzer task. This is also used for
the SCACompiler adapter. These properties can be set either in the build file, using the <property> task for
example, or on the Ant command line using the -D<property=<value> syntax.

When using the SCACompiler adapter via the build.compiler setting, the sourceanalyzer.build Ant
property is equivalent to the bui1dID attribute of the sourceanalyzer task, and the
sourceanalyzer.maxHeap is equivalent to maxHeap. You can use either the command line or your build script
to set these properties.

FORTIFY’ Fortify SCA User Guide 44

sourceanalyzer Task Options

The following table contains the command line options for the sourceanalyzer task. Path values use colon (:)
or semi-colon (;) delimited lists of file names.

Table 16: Sourceanalyzer Task Command Line Options

Attribute

Command Line Option

Description

append

—append

Appends results to the file specified with
the - £ option. If this option is not
specified, Fortify SCA overwrites the file.
Note: To use this option, the output file
format mustbe . fpr or . fvdl. For
information on the -format output
option, see the description in this table.

appserver

-appserver
<appserver>

Specifies the application server: Valid
options are weblogic or websphere

appserverHome

-apperserver-home
<directory>

Specifies the application server's home
directory.

For Weblogic, this is the path to the
directory containing server/1lib
directory.

For WebSphere, this is the path to the
directory containing the bin/
JspBatchCompiler script

appserverVersion

-apperserver-version
<version number>

Specifies the version of the application
server.

For Weblogic: versions 7, 8, 9,and 10
For WebSphere: version 6

bootclasspath

-bootclasspath
<classpath>

Specifies the JDK bootclasspath.

buildID

-b <build ID>

Specifies the build ID. The build ID is
used to track which files are compiled
and linked as part of a build and later to
scan those files.

buildLabel

-build-label
<build label>

Specifies the label of the project being
scanned. The label is not used by Fortify
SCA but is included in the analysis
results.

buildProject

-build-project
<project name>

Specifies the name of the project being
scanned. The name is not used by Fortify
SCA but is included in the analysis
results.

buildVersion

-build-version
<version>

The version of the project being scanned.
The version is not used by Fortify SCA
but is included in the analysis results.

classpath

-cp <classpath>

Specifies the classpath to be used for Java
source code. Format is same as javac
(colon or semicolon-separated list of
paths).

clean

-clean

This option resets the build ID. The
default value is false.

FORTIFY

Fortify SCA User Guide

45

Table 16: Sourceanalyzer Task Command Line Options

Attribute

Command Line Option

Description

debug

-debug

This option enables the debug mode,
which is useful during troubleshooting.

disableAnalyzers

-disable-analyzer
<list of analyzers>

This option takes a colon-delimited list of
analyzers so that you can disable
multiple analyzers at once if necessary.

enableAnalyzers

—enable-analyzer
<list of analyzers>

This option takes a colon-delimited list of
analyzers so that you can enable multiple
analyzers at once if necessary.

encoding

-encoding
<encoding type>

Specifies the source file encoding type.
This option is the same as the javac
encoding option.

extdirs

-extdirs
<list of dirs>

Similar to the javac extdirs option,
accepts a colon or semicolon separated
list of directories. Any jar files found in
these directories are included implicitly
on the classpath.

filter

-filter <file name>

Specifies the filter file.

findbugs

-findbugs

Setting this to true enables FindBugs
analysis. The default value is false.

format

-format
<format type>

Controls the output format Valid options
are fpr, fvdl, text, and auto. The
default is auto, which selects the output
format based on the file extension.
Note: If you are using results
certification, you must specify the fpr
format. See the Audit Workbench User’s
Guide for information on results
certification.

htmlReport

-html-report

Specifies the creation of an HTML
summary of the results produced. The
output format must be fpr or fvdl. The
report file will be given the same base
name as the results output file. The
default value is false.

Note: The HTML summary and the
summary through Audit Workbench
display differing number of issues. This
is in part due to differing methodology
for categorizing HIGH and LOW issues
between the two types of reports. For a
more detailed summary report of issues,
use the \AWB\FPRUtility tool

javaBuildDir

-java-build-dir
<directory>

Specifies one or more directors to which
Java sources have been compiled. Must
be specified for the findbugs option, as
described above.

FORTIFY’

Fortify SCA User Guide

46

Table 16: Sourceanalyzer Task Command Line Options

Attribute

Command Line Option

Description

jdk

-source <value>

Indicates which version of the JDK the
Java code is written for. Valid values for
this optionare 1.3,1.4,1.5,and 1.6.
The defaultis 1.4..

Note: The source and JDK options are
the same. If both options are specified,
the option that is specified last will take
precedence.

jdkBootclasspath

-jdk-bootclasspath
<classpath>

Specifies the JDK bootclasspath.

logfile

-logfile <file name>

Specifies the log file that is produced by
Fortify SCA.

maxHeap

-Xmx <size>

Specifies the maximum amount of
memory used by Fortify SCA. By default,
it uses up to 600 MB of memory (600M),
which can be insufficient for large code
bases.

When specifying this option, ensure that
you do not allocate more memory than is
physically available, because this will
degrade performance. As a guideline,
assuming no other memory intensive
processes are running, do not allocate
more than 2/3 of the available memory.

noDefaultRules

-no-default-rules

Setting this option specifies that Fortify
SCA should not apply default rules when
scanning.

quick

-quick-scan

Launches an SCA quick scan instead of a
regular scan. Set value to true to launch
a quick scan.

resultsfile

-f
<absolute path file
name>

The file to which the results are written.

rules

-rules
<delimited rules 1lis
t>

The rules option takes a list of rules files,
delimited by the path separator (thisis a
semi-colon (;) on Windows, and a colon
(:) on other platforms. For each element
in this list, SCA is passed the -rules
<file>command

scan

—scan

Setting this option determines whether
Fortify SCA should perform analysis on
the provided build ID. The default value is
false.

source

-source <value>

Indicates which version of the DK the
Java code is written for. Valid values for
this optionare 1.3,1.4,1.5,and 1.6.
The defaultis 1.4..

Note: The source and JDK options are
the same. If both options are specified,
the option that is specified last will take
precedence.

FORTIFY’

Fortify SCA User Guide

47

Table 16: Sourceanalyzer Task Command Line Options

Attribute Command Line Option Description
sourcepath -sourcepath Specifies the location of source files
<directory> which will not be included in the scan but

will be used for resolution.

use64bit -64 Runs Fortify SCA under the 64-bit JRE. If
no 64-bit JRE is available, Fortify SCA
fails.

verbose -verbose Setting this option sends verbose status
messages to the console.

The bootclasspath, classpath, extdirs, and options may also be specified as nested elements, as with
the Ant javac task. Source files can be specified via nested <fileset> elements.

The following table includes sourceanalyzer elements.

Table 17: Sourceanalyzer Task Nested Elements

Element Ant Type Description

fileset Fileset Specifies the files to pass to Fortify SCA.

classpath Path Specifies the classpath to be used for Java source code.

bootclasspath Path Specifies the JDK bootclasspath.

extdirs Path Similar to the javac extdirs option. Any jar files found in
these directories are included implicitly on the classpath.

sourcepath Path Specifies the location of source files which will not be
included in the scan but will be used for resolution.

FORTIFY’

Fortify SCA User Guide

48

This chapter describes the following advanced options:

¢ C(Creating a Filter File
¢ Using Properties to Control Runtime Options

Creating a Filter File

You can create a text file for filtering out particular vulnerability instances, rules, and vulnerability categories
when you run the sourceanalyzer command. The file is specified by the - £i1ter analysis option.

Note: Fortify Software recommends that you only use this feature if you are an advanced user, and that you do
not use this feature during standard audits, because auditors should be able to see and evaluate all issues found
by Fortify SCA.

A filter file is a flat text file that can be created with any text editor. The file functions as a blacklist, such that only
the filter items you do not want are specified one per line. The following filter types can be entered on a line:

e (Category
e Instance ID

e RuleID

The filters are applied at different times in the analysis process, according to the type of filter. Category and rule
ID filters are applied during the initialization phase before any scans have taken place, whereas an instance ID
filter is applied after the analysis phase.

As an example, the following output resulted from a scan of the EightBall.java, located in the /Samples/
basic/eightball directory in your Fortify installation directory.

The following command is executed to produce the analysis results:

>sourceanalyzer -b eightball Eightball.java
>sourceanalyzer -b eightball -scan

The following result set displays, showing 12 detected issues.

[F7A138CDE5235351F6A4405BA4AD7C54 : low : Unchecked Return Value : semantic]
Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(12) : Reader.read()

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic]

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(l2) : Reader.read()

[EFE997D3683DC384056FA40F6C7BDOEY : medium : Path Manipulation : dataflow]

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(l2) : ->new FileReader (0)
Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(6) : <=> (filename)
Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(4) : ->EightBall.main(0)

[EFE997D3683DC384056FA40F6C7BDOE8 : medium : Path Manipulation : dataflow]

Fortify SCA 360 v2.l1/Samples/basic/eightball/EightBall.java(l2) : ->new
FileReader (0)

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(6) : <=> (filename)

FORTIFY’ Fortify SCA User Guide 49

Fortify SCA 360 v2.l/Samples/basic/eightball/EightBall.java(4) : -
>EightBall.main (0)

[60ACT727CCEEDEO41DE984E7CE6836177 : medium : Unreleased Resource : Streams
controlflow]

Fortify

SCA 360 v2.1/Samples/basic/eightball/EightBall.java(12) : start

-> loaded : new FileReader(...)

Fortify

SCA 360 v2.1/Samples/basic/eightball/EightBall.java(12) : loaded

-> loaded : <inline expression> refers to an allocated resource

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java (12)
java.io.IOException thrown

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(12) : loaded
-> loaded : throw

Fortify SCA 360 v2.l1/Samples/basic/eightball/EightBall.java(12) : loaded
-> loaded : <inline expression> no longer refers to an allocated resource

Fortify SCA 360 v2.l1/Samples/basic/eightball/EightBall.java(12) : loaded
-> end of scope : end scope : Resource leaked : java.io.IOException thrown
Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(1l2) : start
-> loaded : new FileReader(...)

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(12) : loaded
-> loaded : <inline expression> refers to an allocated resource

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java(14) : loaded

-> loaded : <inline expression> no longer refers to an allocated resource

Fortify

SCA 360 v2.1/Samples/basic/eightball/EightBall.java(14) : loaded

-> end of scope : end scope : Resource leaked

[60ACT727CCEEDEO41DE984E7CE6836178 : medium : Unreleased Resource : Streams
controlflow]

Fortify

SCA 5.2/Samples/basic/eightball/EightBall.java(12) : start -> loaded

new FileReader(...)

Fortify
<inline

Fortify
thrown

Fortify
throw

Fortify
<inline

Fortify

SCA 5.2/Samples/basic/eightball/EightBall.java(12) : loaded -> loaded
expression> refers to an allocated resource

SCA 5.2/Samples/basic/eightball/EightBall.java(12) : java.io.IOException
SCA 5.2/Samples/basic/eightball/EightBall.java(l12) : loaded -> loaded
SCA 5.2/Samples/basic/eightball/EightBall.java(12) : loaded -> loaded

expression> no longer refers to an allocated resource

SCA 5.2/Samples/basic/eightball/EightBall.java(12) : loaded -> end of scope

end scope : Resource leaked : java.io.IOException thrown

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(l2) : start -> loaded : new
FileReader(...)

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(12) : loaded -> loaded
<inline expression> refers to an allocated resource

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(l4) : loaded -> loaded
<inline expression> no longer refers to an allocated resource

FORTIFY Fortify SCA User Guide 50

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(1l4) : loaded -> end of scope

end scope : Resource leaked

[BBOFT74FFAQOFF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover Debug Code

structural]

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java (4)

[FFOD787110C7AD2F3ACFASBEBGEY51C3 : low : Poor Logging Practice : Use of a System

Output Stream : structural]

Fortify SCA 360 v2.l1/Samples/basic/eightball/EightBall.java(10)

[FFOD787110C7AD2F3ACFASBEBG6EOY51C4 : low : Poor Logging Practice : Use of a System

Output Stream : structural]

Fortify SCA 360 v2.1/Samples/basic/eightball/EightBall.java (13)

[BBOF74FFAOFF75C9921D0093A0665BEC : low : J2EE Bad Practices : Leftover Debug Code

structural]

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java (4)

[FFOD787110C7AD2F3ACFASBEBG6EOYS51CS : low : Poor Logging Practice : Use of a System

Output Stream : structural]

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java(10)

[FFOD787110C7AD2F3ACFASBEBGEY51C6 : low : Poor Logging Practice : Use of a System

Output Stream : structural]

Fortify SCA 5.2/Samples/basic/eightball/EightBall.java (13)
The sample filter file, test _filter.txt does the following:

¢ Removes all results related to the Poor Logging Practice category
¢ Removes the Unreleased Resource based on its instance ID

* Removes any data flow issues that were generated from a specific rule ID
The test filter.txt file used in this example contains the following text:

#This is a category that will be filtered from scan output
Poor Logging Practice

#This is an instance ID of a specific issue to be filtered from scan #output
60AC727CCEEDEO41DE984E7CE6836177

#This is a specific Rule ID that leads to the reporting of a specific #issue in
#the scan output: in this case the data flow sink for a Path Manipulation #issue.
823FE039-A7FE-4AAD-B976-9EC53FFE4A59

You can create a file to test the filtered output by copying the above text into a file.
The following command is executed using the -filter option to specify the test filter.txt:

[C:\Program Files\Fortify Software\Fortify SCA 5.0\Samples\basic\
eightball]>sourceanalyzer -b eightball -scan -filter test filter.txt

FORTIFY’ Fortify SCA User Guide

51

The following result set displays:

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value : semantic]
EightBall.java(l2) : Reader.read()

[BBOFT74FFAQFF75C9921D0093A0665BEB : low : J2EE Bad Practices : Leftover Debug Code
structural]

EightBall.java(4)

Using Properties to Control Runtime Options

You can use properties to define runtime options for Fortify SCA, including analysis, output, and performance
tuning options. These properties can be set in four different places:

efortify-sca.properties contains the global set of default properties

efortify-sca.properties (for Windows installations) or . fortify-sca.properties (for
non-Windows installations) contains your locally defined properties

¢ On the command line by specifying -D<property name>=<property value>

efortify-sca-quickscan.properties contains the set of properties that are used when
SCA runs in Quick Scan mode.

The fortify-sca.properties and fortify-sca-quickscan.properties files are located in the
<install directory>/Core/config directory. The fortify.properties fileislocated in either your
Windows user directory or your Unix home directory.

You can edit all properties files directly.

Specifying the Order of Properties

Fortify SCA processes properties in a specific order, using this order to override any previously-set properties
with the values that you specify. You should keep this processing order in mind when making changes to the
properties files.

Property definitions are processed in the following order:

eProperties specified on the command line have the highest precedence and can be specified
during any scan.

¢ Properties specified in the fortify-sca-quickscan.properties file are processed second, but only
when the -quick option is used to operate in Quick Scan mode. If Quick Scan is not invoked, this file is
ignored.

¢ Properties specified in the local fortify.properties file are processed third. Change values in this file on
a scan-by-scan basis to fine-tune your installation.

¢ Properties specified in the global fortify-sca.properties file are processed last You should edit this file
if you want to change the property values on a more permanent basis for all scans.

Fortify SCA also relies on some properties that have internally-defined default values.

The following table lists properties that can be defined. The default values are listed. If you want to use Quick
Scan Mode, or want to tune your application, you can make the changes as described in Table 18: Tuning
Performance Properties.

FORTIFY Fortify SCA User Guide 52

Table 18: Fortify Properties

Property Name

Default Value

Description

com.fortify.sca.

Aborte

dScanOverwritesOutput

false

By default, if a scan is interrupted, the partial results are written to a
different output file: <output>.partial. fpr instead of
<output>. fpr.Ifthis property is set to true, the interrupted result
are written to the normal outfile (<output>. fpr), which
overwrites any full-scan results that may be present in that file.

com.fortify.sca.Appserver
(none) Specifies the application server for processing JSP files: weblogic
or websphere
com.fortify.sca.Appserver.Home
(none) Specifies the application server’s home.
For Weblogic, this is the path to the directory containing server/
1ib directory.
For WebSphere, this is the path to the directory containing the bin/
JspBatchCompiler script
com.fortify.sca.Appserver.Version
(none) Specifies the version of the application server.
For Weblogic, valid values are 7, 8, 9, and 10.
For WebSphere, the valid value is 6.
com.fortify.sca.fileextensions.*
(none) Controls how Fortify SCA handles files with given extensions. See
fortify-sca.properties for examples.
com.fortify.sca.FPRDisableSrcHtml
(none) If true, disables source code rendering into the FPR file.
com.fortify.sca.NoDefaultRules
(none) If true, rules from the default rulepacks are not loaded. Fortify SCA
processes the rulepacks for description elements and language
libraries, but no rules are processed.
com.fortify.sca.NoDefaultIssueRules
(none) If true, disables rules in default rulepacks that lead directly to issues.
Still loads rules that characterize the behavior of functions.
Note: This equivalent to disabling the following rule types:
DataflowSink, Semantic, Controlflow, Structural, Configuration,
Content, Statistical, Internal, and Characterization:Issue.
com.fortify.sca.DisableDefaultRuleTypes

FORTIFY’

Fortify SCA User Guide

53

Table 18: Fortify Properties

Property Name

Default Value

Description

(none)

Disables the specified type of rule in the default rulepacks; where
type is the XML tag minus the suffix “Rule”. For example, use
DataflowSource for DataflowSourceRule elements. You can also
specify specific sections of characterization rules, such as
Characterization:Controlflow, Characterization:Issue, and
Characterization:Generic. Type is case-insensitive.

Use a colon delimited list to specify multiple types of rules.

com.fortify.sca.NoDefa

ultSinkRules

(none)

If true, disables sink rules in the default rulepacks.
Note: Characterization sink rules are not disabled.

com.fortify.sca.NoDefa

ultSourceRules

(none)

If true, disables source rules in the default rulepacks.
Note: Characterization source rules are not disabled.

com.fortify.sca.Projec

tRoot

(platform dependent)

Directory used by Fortify SCA to store intermediate files generated
during scans.

com.fortify.sca.ASPVir

tualRoots.<virtual path>=<physical path>

false

If true, enables support for virtual roots. This property associates
virtual path names with physical path names.

com.fortify.sca.Defaul

tFileTypes

java,jsp,sqlpks,pkh,pkb,xmlp
roperties,config,dllexe

Comma-separated list of file extensions that are picked up by default
by Fortify SCA.

com. fortify.sca.compil

ers.*

(none)

Can be used to inform Fortify SCA about specially-named compilers.
See fortify-sca.properties for examples.

com.fortify.sca.CfmlUn

definedVariablesAreTainted

false

If true, treats undefined variables in a CFML page as tainted. Doing so
serves as a hint to the data flow analyzer to watch out for register-
globals-style vulnerabilities. However, enabling this property
interferes with data flow findings in which a variable in an included
page is initialized to a tainted value in an earlier-occurring included

page.

com.fortify.sca.FVDLDi

sableProgrambData

false

If true, causes the ProgramData section to be excluded from the
analysis results (FVDL output).

com.fortify.sca.FVDLDi

sableSnippets

false

If true, code snippets are not included in the analysis results (FVDL
output).

com.fortify.sca.LogFil

e

FORTIFY’

Fortify SCA User Guide

54

Table 18: Fortify Properties

Property Name

Default Value

Description

S${com.fortify.sca.Pro
jectRoot}/log/sca.log

The default location for the Fortify SCA log file.

com. fortify.

sca.LogMax

Size

(none)

When this property is set, it enables log rotation for the Fortify SCA
log. The value is the number bytes that can be written to the log file
before it is rotated. Must be used with
com.fortify.sca.LogMaxFiles.

com. fortify.

sca.LogMax

Files

(none)

The number of log files to include in the log file rotation set When all
files are filled, the first file in the rotation is overwritten. The value
must be at least 1. Must be used with
com.fortify.sca.LogMaxSize.

com.fortify.

sca.Debug

false

Produces a debug log file. This log file is for Technical Support
purposes.

com.fortify.

sca.PPSSil

ent

false

Prompts the user with the number of lines the scan requires to
analyze the source code. Set to true to suppress the prompt and
automatically deduct the lines.

Note: If the scan requires more lines than are available, the scan
fails with an error indicating how many additional lines are
required.

com. fortify.

sca.Unicod

eInputFile

(none)

When set to true, this property indicates that the input file is UTF-8
based and begins with a byte-order mark (BOM). Typically, you
should only set this property if you see a lexical error at Line 1,
Column 1, indicating that the BOM is present.

com.fortify.

rules.Skip

RulePacks

(none)

Semicolon-delimited list of rulepacks to exclude from the default set.
This property controls which rulepacks are used by Fortify SCA by
default All rulepacks installed in <install directory>/Core/
config/rules are used by default unless they are on this list

com. fortify.

sca.limite

rs.MaxChainDepth

5

Controls the maximum call depth through which the data flow
analyzer tracks tainted data. Increasing this value increases the
coverage of data flow analysis, and results in longer analysis times.
This property can be changed if you are using Quick Scan Mode: see
the following table for the suggested value to use. Note: In this case,
call depth refers to the maximum call depth on a data flow path
between a taint source and sink, rather than call depth from the
program entry point, suchasmain ().

com. fortify.sca.limiters.MaxFieldDepth

FORTIFY’

Fortify SCA User Guide

55

Table 18: Fortify Properties

Property Name

Default Value

Description

4

Controls the maximum granularity of taint tracking through data
structure member fields. This value is the number of nested fields
through which taint will be tracked before the entire structure is
considered tainted. Increasing this value improves the accuracy of
analysis by reducing false positives, and normally increases analysis
time.

com.fortify.sca.limite

rs.MaxPaths

5

Controls the maximum number of paths to report for a single data
flow vulnerability. Changing this value does not change the results
that are found, only the number of data flow paths displayed for an
individual result

com. fortify.sca.limite

rs.MaxIndirectResolutionsForCall

128

Controls the maximum number of virtual functions that are followed
at a given call site.

com.fortify.sca.jsppa

rserusesclasspath

false

Allows the user to specify the classpath to the Weblogic parser. This
is for Weblogic 9 and 10 only.

The following table describes the properties that can be used to tune default scanning performance. They have
different defaults for Quick Scan mode, which can be adjusted by editing the fortify-sca-
quickscan.properties file. If you want to use the recommended tuning parameters, you do not need to edit

this file; however, you may find that you want to experiment with other settings to fine-tune your specific

application.

Remember that properties in this file are processed only if you specify the -quick option on the command line

when invoking your scan.

Table 19: Performance Tuning Properties

Property Name

Values

Description

com.fortify.sca.Filter

Set

Default value is not set.

Quick Scan value: Targeted.

When set to targeted, this property runs rules only for the
targeted filter set Running only a subset of the defined rules
allows the Fortify SCA scan to complete more quickly. This causes
SCA to run only those rules that can cause issues identified in the
named filter set, as defined by the default project template for
your application. For more information about project templates,
see the Audit Workbench User’s Guide.

com.fortify.sca.FPRDisableSrcHtml

Default value: False.

Quick Scan value: True.

When set to true, this property prevents the generation of
marked-up source files. If you plan to upload FPRs that are
generated as a result of a quick scan, you must set this property
to false.

FORTIFY’

Fortify SCA User Guide

56

Table 19: Performance Tuning Properties

Property Name

Values

Description

com.fortify.sca.limiters.

ConstraintPredicateSize

Default value: 50000.

Quick Scan value: 10000.

Skips calculations defined as very complex in the buffer analyzer
to improve scanning time.

com.fortify.sca.limiters.

BufferConfidenceInconclusiveOnTimeout

Default value: true.

Quick Scan value: false.

Skips calculations defined as very complex in the buffer analyzer
to improve scanning time.

com.fortify.sca.limiters

.MaxChainDepth

Default value: 5.

Quick Scan value: 4.

Controls the maximum call depth through which the data flow
analyzer tracks tainted data. Increasing this value increases the
coverage of data flow analysis, and results in longer analysis
times.

Note: In this case, call depth refers to the maximum call depth on
a data flow path between a taint source and sink, rather than call
depth from the program entry point, such asmain ().

com.fortify.sca.limiters

.MaxTaintDefForVar

Default value: 1000.

Quick Scan value: 500.

This property sets the complexity limit for data flow precision
backoff. Data flow incrementally decreases precision of analysis
for functions that exceed this complexity metric for a given preci-
sion level

com.fortify.sca.limiters.

MaxTaintDefForVarAbort

Default value: 4000.

Quick Scan value: 1000.

This property sets a hard limit for function complexity. If com-
plexity of a function exceeds this limit at the lowest precision
level, the analyzer will not analyze that function.

com. fortify.sca.DisableGlobals

Default value: false.

Quick Scan value: false.

This property prevents the tracking of tainted data through global
variables to allow faster scanning.

com.fortify.sca.CtrlflowSkipJSPs

Default value: false.

Quick Scan value: false.

This property skips control flow analysis of]SPs in your project.

com.fortify.sca.NullPtrMaxFunctionTime

Default value: 300000.

Quick Scan value: 30000.

This property sets a time limit, in milliseconds, for Null Pointer
analysis for a single function. The default is five minutes. Setting
it to a shorter limit decreases overall scanning time.

com.fortify.sca.CtrlflowMaxFunctionTime

Default value: 600000.

Quick Scan value: 30000.

This property sets a time limit, in milliseconds, for control flow
analysis for a single function. The default is 10 minutes.

FORTIFY’

Fortify SCA User Guide

57

Table 19: Performance Tuning Properties

Property Name

Values

Description

com.fortify.sca.TrackPaths

By default, this property is not
set.

Quick Scan value: NoJSP.

This property disables path tracking for control flow analysis.
Path tracking provides more detailed reporting for issues, but
requires more scanning time. You can disable this for JSP only by
setting it to NoJSP, or for all functions by setting it to None.

com.fortify.sca.JdkVersion

Default value: 1.4

This property specifies the JDK version.

FORTIFY’

Fortify SCA User Guide

58

Fortify Source Code Analyzer can report OutOfMemory errors during an Fortify SCA scan. These errors are the
result of Java heap exhaustion, Java permanent generation exhaustion, or native heap exhaustion.

Use the following sections to identify these errors and resolve them:

¢ Java Heap Exhaustion
e Java Permanent Generation Exhaustion

* Native Heap Exhaustion

Java Heap Exhaustion

Java heap exhaustion is the most common type of memory problem that occurs during Fortify SCA scans. It
happens when the Java virtual machine that Fortify SCA is using for a scan has been started with an
insufficiently large value for maximum heap size.

Error Message

You can identify a Java heap exhaustion by the following error messages, which Fortify SCA displays in the log
file and command line output:

Listing 1: Java Heap Exhaustion Messages

There is not enough memory available to complete analysis. For details
on making more memory available, please consult the user manual.

java.lang.OutOfMemoryError: Java heap space

java.lang.OutOfMemoryError: GC overhead limit exceeded

Resolution

You can resolve a Java heap exhaustion problem by allocating more heap space to the virtual machine that
Fortify SCA is using while starting the scan. By default, Fortify SCA runs with a maximum heap value of 600MB.
Increase this value by using the -xmc command line argument when running a Fortify SCA scan.

Before adjusting this parameter, determine the maximum allowable value for the Java heap space. This value
depends on the following factors:

¢ Available physical memory

e Virtual address space limitations

Each of these can limit the amount of space that you can allocate to the Java heap for Fortify SCA. Use the lower
of the two limiting values as the upper bound for a -xmx argument. The following example will run a Fortify SCA
scan with 1300MB available for the Java heap:

Listing 2: Java Heap Exhaustion Example 1

The following example will run an Fortify SCA scan with 1GB available for the Java heap:

Listing 3: Java Heap Exhaustion Example 2

> sourceanalyzer —-Xmx1lG ..

FORTIFY Fortify SCA User Guide 59

Physical Memory

Do not allow Fortify SCA to use more memory than is physically available in the environment. Doing so will lead
to disk swapping and significantly degrade Fortify SCA performance.

To determine available physical memory, start by determining how much total physical memory (RAM) is
installed on the system. Subtract from this value an allowance for the operating system (200M is a good guess,
although it varies by 0S). If the system will be dedicated to running SCA, you are done. If the system resources
will be shared with other memory-intensive processes, an al-lowance should also be subtracted for those other
processes. Note that other processes that are resident but not active while SCA is running can be swapped to
disk by the operating system and do not need to be accounted for.

Virtual Address Space

By default, Fortify SCA runs as a 32-bit process. All 32-bit processes are subject to virtual address space
limitations, the specifics of which depend on the underlying operating system.

You can run Fortify SCA in 64-bit mode on 64-bit-capable hardware. In 64-bit mode, virtual address space
limitations are not a factor and java heap space is limited only by available physical memory. Although it is
slightly more memory efficient to run Fortify SCA in 32-bit mode, you should activate 64-bit mode if a large heap
is required for a scan.

Activate 64-bit mode by passing the -64 argument to Fortify SCA on the command line:

Listing 4: 64-bit Mode Argument

> sourceanalyzer -64 ..

In 32-bit mode the size of the java heap is constrained by the amount of contiguous virtual address space that
can be reserved.

On modern Linux systems, this limit is usually near 3 GB.

On Windows systems, address space fragmentation due to the way DLLs are loaded means the limit is typically
between 1200 MB and 1600 MB. This value will vary among systems due to different DLLs being loaded into the
java process (virus scanning software is one example).

If Fortify SCA does not start when given a large value for -xmx, it might be because virtual address space limits
have been exceeded. In this case, Fortify SCA will display an error on the command line similar to the following:

Listing 5: Java Heap Exhaustion Example

Error occurred during initialization of VM
Could not reserve enough space for object heap

FORTIFY Fortify SCA User Guide 60

Java Permanent Generation Exhaustion

Java maintains a separate memory region from the main heap which is called the permanent generation. In rare
cases, this memory region gets filled up during a scan, causing an OutOfMemory error.

Error Message

You can identify permanent generation exhaustion by the following error message, which Fortify SCA displays
in the log file and command line output:

Listing 6: Java Permanent Exhaustion Error Message

java.lang.OutOfMemoryError: PermGen space

Resolution

Permanent generation exhaustion is resolved by increasing the maximum size of the permanent generation.
You can tune the permanent generation size by passing to -XX:MaxPermSize argument to the Fortify SCA
command line, as in the following example:

Listing 7: Java Permanent Exhaustion Error Message

> sourceanalyzer —-XX:MaxPermSize=128M ..

The default maximum value for the permanent generation is 64 MB. Note that the permanent generation is
allocated as a separate memory region from the java heap, so increasing the permanent generation will
increase the overall memory requirements for the process. See the discussion of virtual address space and
physical memory limitations in the previous section for determining overall limits.

FORTIFY Fortify SCA User Guide 61

Native Heap Exhaustion

Native heap exhaustion is a very rare scenario in which the java virtual machine is able to allocate the java
memory regions on startup, but is left with so few resources (either virtual address space or physical memory)
for its native operations (such as garbage collection) that it eventually encounters a fatal memory allocation
failure that immediately terminates the process.

Error Message

You can identify native heap exhaustion by an abnormal termination of the Fortify SCA process, which Fortify
SCA displays in the command line output:

Listing 8: Native Heap Exhaustion Error Messages

A fatal error has been detected by the Java Runtime Environment:
#
java.lang.OutOfMemoryError: requested ... bytes for GrET

Because this is a fatal java virtual machine error, it will usually be accompanied by an error log created in the
working directory, named as follows: hs_err_pidNNN.log.

Resolution

The resolution to this type of problem is slightly counterintuitive. Because the problem is a result of
overcrowding within the process, the resolution is to reduce the amount of memory used for the Java memory
regions (Java heap and Java permanent generation). Reducing either of these values should reduce the
crowding problem and enable the scan to be completed successfully.

FORTIFY Fortify SCA User Guide 62

Fortify Software acknowledges the following:

¢ Java RunTime Environment

Java RunTime Environment

The Fortify Source Code Analyzer distribution CD-ROM media includes the Sun Java RunTime Environment
(JRE). The following statements are included to comply with the terms of JRE distribution.

This product includes code licensed from RSA Security, Inc.

Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/.

FORTIFY’ Fortify SCA User Guide

63

Symbols

.NET command line options 38
@filename option 41

A

analysis command line options 36
analyzing
.NET 11
NET 1.1 11
.NET 2.0 11
ASP.NET 1.1 12
ColdFusion 21
J2EE 8
JSP files 8
Visual Studio .NET 2003 11
Visual Studio 2005 11
Ant
task parameters 43
ASP.NET 1.1
analyzing 12
B

build

scan options 18
build integration command line options 38
Build Monitor

configuring 18

example 19

options 17

overview 17

results folder 18

scan options 18

starting 19
builds
monitoring 19
C
C and C++
command line examples 15
ColdFusion
analyzing 21

command line options 37

command line syntax 21
command line examples

.Net 11

C and C++ 15
command line options

.NET 38

analysis 36

build integration 38

ColdFusion 37

debug 41

encoding 41

help 41

JavalJ2EE 37

other 41

output 34

FORTIFY’

runtime 40
version 41
command line syntax
ColdFusion 21
Java 6, 21
configuring
Build Monitor 18
results folder 18
creating
filter files 49
D

debug option 41
E

encoding option 41
example

Build Monitor 19
F

file specifiers 21, 41
filter files

creating 49
FindBugs

integrating with 10
Fortify SCA Properties 52

H
help option 41
I
integrating
with FindBugs 10
with Make 15
J
J2EE
analyzing 8
command line options 37
Java
command line options 37
command line syntax 6, 21
file specifiers 21, 41
JSP files
analyzing 8
M
Make
integrating with 15
monitoring
builds 17, 19
o)
options

Build Monitor 17
output command line options 34
overview

Build Monitor 17
P

properties file 52
R

runtime command line options 40

Fortify SCA User Guide 64

runtime properties 52
S

scan
monitoring build 18
SQL notes 21, 22
starting
Build Monitor 19
T

task parameters 43
touchless build adapter 15
translating

Classic ASP 21

JavaScript 21

other languages 21

PHP 21

PLSQL 21

SQL 21

TSQL 21

VB 6 21

VBScript 21

Vv

version option 41
Visual Studio
Fortify plug-in 11

FORTIFY

Fortify SCA User Guide

65

	Table of Contents
	Preface
	Contacting Fortify Software
	Technical Support
	Corporate Headquarters
	Web Site

	About the Fortify 360 Documentation Set

	Introduction
	Overview of Fortify SCA
	Overview of the Analyzers
	Overview of the Analysis Phases
	Example of Analysis Commands
	Memory Considerations
	Translation Phase
	Fortify SCA Per Use License Only, Verifying Available Lines
	Analysis Phase
	Verification of the Translation and Analysis Phase

	Translating Java Code
	Java Command Line Syntax
	Java Command Line Examples
	Integrating with Ant using the Fortify Ant Compiler Adapter
	Translating J2EE Applications
	Working with JSP Projects
	XML Configuration Files
	Call Graph

	Handling Resolution Warnings
	Java Warnings
	J2EE Warnings

	Using FindBugs

	Translating .NET Source Code
	Visual Studio .NET
	Translating Simple .NET Applications
	Translating ASP.NET 1.1 (Visual Studio Version 2003) Projects
	Handling Resolution Warnings
	.NET Warnings
	ASP.NET Warnings

	Translating C/C++ Code
	C and C++ Command Line Syntax
	C and C++ Command Line Examples
	Integrating with Make
	Using the Fortify Touchless Build Adapter
	Modifying a Makefile to Invoke Fortify SCA

	Using Fortify Build Monitor
	Fortify Build Monitor Overview
	Configuring Fortify Build Monitor
	Monitoring Builds
	Example of Monitoring a Project

	Visual Studio .NET
	Visual Studio 6.0

	Translating Other Languages
	Command Line Syntax for Other Languages
	Configuration Considerations
	Configuring Python
	Configuring ColdFusion
	Configuring the SQL Extension
	Configuring ASP/VBScript Virtual Roots
	Other Language Command Line Examples
	Example of Translating PL/SQL
	Example of Translating T-SQL
	Example of Translating PHP
	Example of Translating Classic ASP written with VBScript
	Example of Translating JavaScript
	Example of Translating VB Script File

	Translating COBOL Code
	Supported Technologies
	Preparing COBOL Source Files for Translation
	COBOL Command Line Syntax
	Auditing a COBOL Scan

	Troubleshooting and Support
	Troubleshooting
	Using the Log File to Debug Problems
	Translation Failed Message
	JSP Translation Problems
	ASPX Translation Problems
	C/C++ Precompiled Header Files

	Reporting Bugs and Requesting Enhancements

	Appendix: Managing Per Use Accounts
	About the Fortify SCA Per Use Edition
	Managing Your Portal User Account
	Changing your Password

	Purchasing Additional Lines
	Transferring Lines
	Transferring Lines to a Machine with Internet Access
	Transferring Lines to a Machine without Internet Access

	Appendix: Command Line Interface
	Command Line Options
	Output Options
	Analysis Options
	Python Option
	ColdFusion Options
	Java/J2EE Options
	.NET Options
	Build Integration Options
	Directives
	Runtime Options
	Line Transfer Options
	Other Options

	Specifying Files

	Appendix: Using the sourceanalyzer Ant Task
	Using the Ant sourceanalyzer Task
	Ant properties
	sourceanalyzer Task Options

	Appendix: Advanced Options
	Creating a Filter File
	EightBall.java(4)
	Using Properties to Control Runtime Options
	Specifying the Order of Properties

	Appendix: Fortify SCA Memory Tuning
	Java Heap Exhaustion
	Error Message
	Resolution

	Java Permanent Generation Exhaustion
	Error Message
	Resolution

	Native Heap Exhaustion
	Error Message
	Resolution

	Appendix: Acknowledgements
	Java RunTime Environment

	Index

