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Abstract—This article proposes a novel, reduced complexity,
block-adaptive digital predistortion (DPD) technique for mitigat-
ing the spurious emissions that occur when amplifying spectrally
noncontiguous signals with a nonlinear power amplifier (PA).
The introduced DPD solution is designed for real-time scenarios
where a loop delay exists in the DPD system. By a proper choice
of the DPD parameters, the technique is shown to be robust
against arbitrarily long loop delays while not sacrificing DPD
linearization performance and convergence speed. Moreover,
the proposed DPD solution has lower complexity compared
to previously proposed solutions in the literature while giving
excellent linearization performance in terms of mitigating the
spurious emissions. Real-time implementations of the algorithm
on the WARP platform are developed, including considerations
for several key trade-offs in the hardware design to balance
the robustness, performance and complexity. The simulations
and real-time FPGA experiments evidence excellent and robust
performance in real-life situations with highly nonlinear PAs and
arbitrary loop delays.

Index Terms—carrier aggregation, digital predistortion, dy-
namic spectrum access, FPGA, LTE-A, noncontigious spectrum
transmission, power amplifier nonlinearity, real-time implemen-
tation.

I. INTRODUCTION

D IGITAL predistortion (DPD) is one of the most effective
solutions for transmitter linearization, and has attracted

substantial attention in the past 15-20 years (see [1] and the
references therein). The vast majority of the previous works
on DPD has concentrated on single-carrier transmissions.
However, noncontiguous spectral allocations are gradually
becoming a norm in many wireless communication standards,
such as 3GPP LTE-A and the 802.11 family. In scenarios
where a single power amplifier (PA) is used to amplify several
component carriers (CCs), two challenges arise for the DPD
design: (1) The introduction of intermodulation distortion
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(IMD) between the noncontiguous CCs, which may lead to a
violation of the transmitter emission masks [2], [3] as shown
in Fig. 1, and (2) the increased DPD parameter estimation and
filtering complexity, especially when the spacing between the
CCs is large. This comes as a result of the DPD processing and
estimation generally having to operate at a sample rate of at
least five times the overall aggregated bandwidth (the allocated
bandwidth plus the CC separation). Consequently, the DPD
complexity and power consumption quickly rise, and the
additional complexity due to DPD may become unjustifiable,
especially for mobile-like devices.

In [4] and [5] a new DPD solution has been proposed that
can tackle the IMD resulting from noncontiguous bandwidth
allocations with a significantly lower complexity compared to
previous solutions. This DPD solution focuses on mitigating
certain IMD spurs only, which in many scenarios are the
limiting factor in terms of transmitter emission violations,
especially for portable devices [2], [3]. The idea is based on
injecting IMD spurs with opposite phase into the input of the
PA, such that at the output of the PA the spur is cancelled. This
idea of IMD spur injection was previously introduced in [6]–
[8], where frequency-flat PA responses were assumed within
the spurious bands. On the other hand, the DPD learning in [5]
was based on a lower complexity online adaptive decorrelation
between locally generated baseband nonlinear basis functions
representing the IMD at the target sub-band, and the actual
IMD spur at the PA output. The PA frequency selectivity
was also taken into consideration, thus giving better results
compared to previous solutions. The main advantage of this
spur injection DPD approach, which we refer to as “sub-
band DPD”, compared to traditional DPD methods, which
aim to linearize the whole aggregated transmit band (“full-
band DPD”), is the significant reduction in the complexity
in both the DPD processing and estimation stages. The main
scope of this article is to develop and modify the algorithm
from [5] to be more suitable to real-time implementation with
arbitrary loop delay, as well as to develop a real-time hardware
prototype for the DPD solution on the WARP platform.

The challenges associated with real-time implementation,
in particular the loop time delay, require a modification of
the DPD design on the system level. A new block-adaptive
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Fig. 1. Intermodulation spurs created by the nonlinear PA due to noncon-
tiguous transmission with two component carriers.

DPD solution, opposed to the earlier sample-adaptive solution
in [4], [5], is introduced in this paper. A real-time software
implementation of the proposed block-adaptive sub-band DPD
algorithm is presented. In addition, an FPGA implementation
is also developed, with even lower complexity and power
consumption, and less delay constraints compared to the
software implementation. We show that the proposed solution
can act as a cost effective and efficient DPD solution for
wireless portable devices with limited processing capabilities.

The rest of the article is organized as follows: Section II
introduces the new block-adaptive sub-band DPD learning
algorithm. In Section III, computational and instrumentation
complexity of sub-band vs. full-band DPD are discussed. Sec-
tion IV shows some simulation examples. Section V explains
the prototype implementation platform with a real WLAN RF
transceiver and the implementation results for the proposed
DPD solution. Finally, Section VI concludes the main findings
in this paper.

II. BLOCK-ADAPTIVE DECORRELATION-BASED SUB-BAND
DPD SOLUTION

The output of a third-order PA model when excited with a
noncontiguous signal is shortly analyzed at composite base-
band equivalent level, assuming a parallel Hammerstein (PH)
model for the PA. The two CCs are assumed to be separated
by ∆f as shown in Fig. 1. Thus, the composite baseband
equivalent PA input and output signals, x(n) and y(n), read

x(n) = x1(n)ej2π
∆f
2fs

n + x2(n)e−j2π
∆f
2fs

n (1)

y(n) = f1,n ? x(n) + f3,n ? |x(n)|2x(n), (2)

where f1,n and f3,n are the filters in the main and third order
PH branches, respectively, ? is the convolution operator, and
x1(n) and x2(n) are the baseband equivalents of the input
CCs. Through direct substitution of (1) in (2), the baseband
equivalent positive IM3 term, as an example, can be easily
extracted, yielding

yIM3+
(n) = f3+3,n ? (x∗2(n)x21(n)). (3)

Here, f3+3,n is the baseband equivalent response of f3,n at the
positive IM3 sub-band around (fc+3∆f/2), where fc denotes
the carrier frequency. Stemming from the signal structure in
(3), a natural injection signal is a filtered version of the basis
function x∗2(n)x21(n) using a filter αn with memory depth N .

Incorporating such DPD processing, the composite baseband
equivalent PA input signal x̃(n) reads

x̃(n) = x(n) +
[
α∗
n ? (x∗2(n)x21(n))

]
ej2π

3∆f
2fs

n. (4)

Substituting now x̃(n) in (2), the positive IM3 sub-band signal
at the PA output becomes

ỹIM3+
(n) ≈ (f3+3,n + f3+1,n ? α

∗
n) ? x∗2(n)x21(n)

+ 2f3+3,n ?
[
(|x1(n)|2 + |x2(n)|2)(α∗

n ? x
∗
2(n)x21(n))

]
, (5)

where terms with nonlinearity order higher than five have
been neglected for simplicity of presentation. From (5), it can
be shown that the strength of the considered IM3 sub-band
signal at the PA output depends directly on, and can thus be
controlled by, the DPD filter αn. Examining the first line of
(5), it can be seen that the solution that nulls the third order
term is simply obtained by setting the first line of the equation
to zero, i.e., f3+3,n+f3+1,n?α

∗
n,inv = 0, ∀n. This solution is called

the third order inverse solution.
However, the IM3 sub-band signal always contains higher

order IM products, created by the PA nonlinearity and the
predistortion itself, such as the fifth order term seen on the
second line of (5). The third order inverse solution cannot
suppress these higher order components. Meanwhile, the fifth
order term can be seen to be strongly correlated with the third
order basis function, x∗2(n)x21(n). We therefore conjectured, as
showed in [4], [5], that decorrelating the IM3 sub-band signal
at the PA output with x∗2(n)x21(n) and its delayed replicas
could give superior performance compared to the third order
inverse solution. The DPD filter coefficients will converge to
the value that minimizes the correlation between the measured
signal at the target IM3 sub-band and the corresponding basis
function, thus achieving the objective of suppressing the power
in the IM3 sub-band.

A challenging problem appears when implementing this
DPD solution on a real-time platform. During the DPD learn-
ing phase, and under real time constraints the DPD parameter
convergence and consequently the DPD linearization perfor-
mance can be affected if the learning loop delay becomes
large. Stemming from these real time challenges, a new
block-adaptive decorrelation-based sub-band DPD solution is
developed in this work. A block diagram explaining the main
architecture of the proposed block based solution is shown in
Fig. 2. For further algorithm flexibility and delay tolerance
compared to the sample-adaptive techniques in [4], [5], we
introduce a block-adaptive learning rule with two distinct
block definitions as illustrated in Fig. 3. A single update of the
algorithm will utilize M samples, as shown in (6), whereas the
DPD parameter update interval is L samples, with M ≤ L.
Thus, by proper choice of M and L, arbitrarily long loop
delays can be tolerated, facilitating real-time implementation.

Based on the DPD architecture in Fig. 2, and the block-
based learning in Fig. 3, and assuming an estimation block
size of M samples, and N + 1 DPD filter coefficients, the
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Fig. 2. Block-adaptive decorrelation-based sub-band DPD system architecture for third-order spurious intermodulation reduction in a noncontiguous transmitter.
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sub-band.
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Fig. 3. Block based DPD learning concept. The DPD parameter(s) estimated
in the current estimation block m are applied on the next block.

DPD parameter learning algorithm becomes

α(m+ 1) = α(m)− µ

||U(m)||2 + C
[eH(m)U(m)]T , (6)

where

e(n) = ỹIM3+
(n) (7)

e(m) = [e(nm) e(nm + 1) ... e(nm +M − 1)]T (8)

u(n) = x∗2(n)x21(n) (9)

u(nm) = [u(nm) u(nm + 1) ... u(nm +M − 1)]T (10)
U(m) = [u(nm) u(nm − 1) ... u(nm −N)] (11)

α(m) = [α0(m) α1(m) ... αN (m)]T . (12)

Here, ỹIM3+
(n) is the positive IM3 signal measured from the

PA output, e(m) is the error signal vector, and U(m) is the
filter input matrix, with m denoting the block index. The index
of the first sample of block m is denoted by nm. The DPD
filter α(m) is applied on the whole block of L samples as
illustrated in Fig. 3.

III. COMPUTATIONAL AND HARDWARE COMPLEXITY
PERSPECTIVES

In this section, we provide a more thorough comparison
of the computing and hardware complexities of the sub-band

DPD introduced in this paper which focuses on a specific IM
sub-band and the conventional full-band DPD architecture.

A. Sample Rate and Parameter Number Considerations

The full-band DPD, assuming nonlinearity order seven,
needs to run at a sample rate seven times the composite
dual-carrier signal bandwidth, which quickly becomes im-
possible when the carrier separation increases. For the sub-
band technique, on the other hand, the minimum sample rate
is less than or equal to three times the bandwidth of the
wider component carrier for a third order sub-band DPD as
proposed in this article. Simulation results in section IV show
that a third order sub-band DPD has a similar if not better
performance than a seventh order full-band DPD in terms
of spurious emission suppression. This is the motivation for
using these DPD orders in the comparison. To give a more
concrete example, let us assume two 5 MHz CCs separated by
30 MHz. The minimum sample rate with a classical seventh
order full-band DPD would be 245 MHz, whereas with the
third order sub-band DPD, it is only 15 MHz. The difference
in complexity becomes even bigger when higher order DPDs
are considered and/or the carrier spacing between the two CCs
is increased.

Frequency selectivity of the nonlinear PA is another im-
portant factor to be considered when comparing the two
DPD architectures. The full-band DPD predistorts the whole
aggregated band, which in our previous example is almost an
order of magnitude bigger than the IM3 sub-band predistorted
by the sub-band DPD. This implies that when memory effects
of the PA are considered, substantially longer filters are needed
in the full-band DPD compared to the sub-band DPD, to
reach a certain performance requirement. In the experiments
in this paper (see Section IV and V), only a single tap is
used in the sub-band DPD, while still providing comparable
spur mitigation performance when compared to a multi-tap



full-band DPD.

B. Running Complexity

In general, the computational complexity of the DPD can
be classified into three main parts [9]: identification com-
plexity, adaptation complexity, and running complexity. The
identification part is basically the estimation complexity of
the DPD parameters, while the adaptation complexity includes
the required processing by the DPD in order to adapt to
new operating conditions or device aging. Finally, the running
complexity, which is the most critical especially for mobile-
type devices, involves the number of computations done per
second while the DPD is operating.

To get a more quantitative understanding of the compu-
tational running complexity difference between the full-band
and sub-band DPD architectures, we shall use the number of
floating point operations (FLOPs) per sample, the number of
DPD parameters, and the required sample rate in the predis-
tortion path as quantitative metrics. The running complexity is
divided into two main parts, (1) the basis function generation
and (2) the actual predistortion using these basis functions [9].
The full-band DPD architecture that we use in our comparative
performance simulations, and which is also widely applied oth-
erwise, is based on the parallel Hammerstein (PH) architecture
polynomial basis functions and FIR filters [1]. Considering
a seventh order PH architecture with memory order three, 9
FLOPs are required for the basis functions generation [9]. The
predistortion filtering requires 4 × 3 complex multiplications
and additions with eight FLOPs each (i.e. 96 FLOPs). Thus
the total number of FLOPs required by the full-band DPD in
this particular example is 105 FLOPs per output sample.

In the sub-band DPD, on the other hand, when the positive
IM3 sub-band is considered for example, the third order basis
function reads x∗2(n)x21(n) [4], requiring only two complex
multiplications with 6 FLOPs each. Consequently, the number
of FLOPs required by the sub-band DPD for basis function
generation is 12 FLOPs per sample per sub-band. Moreover,
in the sub-band DPD architecture, a single tap is shown to
be enough to achieve satisfactory intermodulation suppression
as shown in the simulation and implementation examples in
sections IV and V, when compared to the full-band DPD.
Thus, a single complex multiplication, or 6 FLOPs, is required
per sample per processed sub-band for the sub-band DPD
filtering. The total number of FLOPs required by the sub-band
DPD in our example thus becomes 18 FLOPs. Based on these
numbers, and taking into account the required sample rates in
the scenario with two 5 MHz CCs and 30 MHz carrier spacing,
the number of FLOPs per second (FLOPS) becomes 25.725
GFLOPS for the full-band DPD, and 0.27 GFLOPS for the
sub-band DPD. These numbers are summarized in Table I.

C. Feedback Receiver Instrumentation Complexity

In addition to the complexity reduction in the DPD main
path, the complexity of the feedback path used for DPD
parameter estimation and adaptation is also greatly reduced.
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In order to estimate the parameters of the positive IM3 sub-
band DPD, as an example, we only need to observe the
positive IM3 sub-band at the PA output in order to estimate
the DPD parameters, instead of observing the whole signal
band (including the IM sub-bands), which is the case with
full-band DPD. This reduction in the observation bandwidth
reduces the cost, complexity, and power consumption in the
feedback path, thus allowing use of simpler instrumentation.

IV. SIMULATION RESULTS

A carrier aggregated LTE-A uplink signal with QPSK
subcarrier modulation is applied to a wide-band parallel Ham-
merstein PA model of nonlinearity order 5, which is based
on measurements of a real mobile PA. The carrier separation
between the two CCs is 30 MHz, and a duplexer filter model



TABLE I
QUANTITATIVE RUNNING COMPLEXITY AND LINEARIZATION PERFORMANCE COMPARISON OF FULL-BAND VERSUS SUB-BAND DPD. 5 MHZ BW

ALLOCATION PER CC WITH 30 MHZ CARRIER SPACING IS USED AS IN FIG. 4.

DPD Running Complexity Performance
Coeffs Fs [MSPS] GFLOPS EVM [%] Positive IM3R [dBc]

No DPD N/A N/A N/A 2.1916 31.2181
Full-Band DPD 12 245 25.725 0.3699 44.5674
Sub-Band DPD 1 15 0.27 2.2519 50.2562

based on a real mobile duplexer is also used in our simulations.
The bandwidth of each CC is 5 MHz, and the carriers are
allocated such that the positive IM3 sub-band lies close to the
edge of the transmitter filter passband. Our proposed block
adaptive sub-band DPD is then tuned to predistort the positive
IM3 sub-band since the negative one is already filtered by
the transmitter filter as shown in Fig. 4. In this example, the
estimation block size M = 100, while the DPD update interval
L = 1000, and a single sub-band DPD filter coefficient is
used. Fig. 5 shows the convergence of the sub-band DPD
filter coefficient and the mean residual power in the IM3 sub-
band for different configurations of the DPD estimation block
size M and update interval L. The figure shows the reliability
of the sub-band DPD performance even when the difference
between M and L gets larger, which means larger tolerance
for additional loop delay in the system.

In the full-band DPD scenario, implemented for reference, a
seventh order DPD based on the indirect learning architecture
(ILA) (see [1]) is used. Altogether four filters, all with 3 taps,
are used in the full-band DPD, one for each basis function.
Three ILA iterations are used. In the full-band DPD, an
inherent 1.5 dB backoff needs to be applied to the transmit
path to account for the slight increase in the PAPR due to the
predistortion, something which is not needed in the sub-band
DPD. Therefore, for a fair comparison, the transmitter power
levels are adjusted such that the output power after the PA is
the same for both full-band and sub-band DPDs.

In Fig. 4, the Tx power level is 20 dBm, and it can be seen
that without applying DPD, the transmitter violates the spuri-
ous emission limit of -30 dBm/MHz, defined by ITU-R [10].
After the DPD, the spur levels are below the limit with both
DPD architectures. Table I shows a quantitative complexity
and performance analysis of the full-band and sub-band DPDs
used in Fig. 4. The complexity numbers were already treated
in Section III. To recap, the number of FLOPs per second
(FLOPS) is 25.725 GFLOPS for the full-band DPD, and
0.27 GFLOPS for the sub-band DPD, evidencing remarkable
complexity and power consumption savings with the sub-band
DPD architecture. In terms of linearization performance, both
DPDs give quite good suppression for the IM3 distortion.
We quantify the suppression of intermodulation power at the
IM3 bands through the power ratios relative to the component
carrier wanted signal power as shown in Fig. 1, and defined
as

IM3RdB = 10 log10

Pwanted,cc
PIM3

(13)

The IM3R at the positive IM3 sub-band, without any Tx

filter, is shown in Table I for the CC allocations in Fig. 4.
The sub-band DPD provides a slightly better performance in
terms of the positive IM3R compared to the full-band DPD
in this particular scenario. The inband distortion (Error Vector
Magnitude; EVM) is also measured, where the full-band DPD
somewhat outperforms the sub-band DPD. This is expected,
since the full-band DPD considers the whole transmit band
including the main component carriers. However, the EVM
degradation with the sub-band DPD as compared to without
DPD is around 0.06%, which is negligible.

V. EXPERIMENTAL TESTING AND RESULTS

In this section, we illustrate two schemes on experimental
verification of DPD functionalities, including a WARPLab-
based fast prototyping and a FPGA-based real-time implemen-
tation. Corresponding results are also shown for each scheme.

A. Experimental Verification based on WARPLab

The functionality of the block based DPD design is veri-
fied experimentally using the WARPLab framework and the
Wireless Open Access Research Platform (WARP) v3 board.
WARPLab is a software-defined radio framework for rapid
PHY prototyping. WARPLab consists of a commercial PC
for baseband processing in MATLAB, WARP radio nodes
for signal transmitting or receiving, and an Ethernet link
for transferring data and commands between PC and WARP
nodes. For further details on WARPLab and the WARP boards,
see [11].

The experimental setup for testing the block based digital
predistortion algorithm with a real power amplifier is as
follows. A signal for broadcasting is generated in MATLAB.
A block is sent to the WARP board using WARPLab version
7.5.1. The signal is transferred through the transmit path of the
hardware which includes a digital to analog converter, upcon-
version to 2.4 GHz, amplification, and transmission through a
SMA connector on the RF port A to coax. The signal passes
through 40 dB of in-line attenuation to protect the receive path
and is then received on the RF port B of the same board. The
signal is down-converted and sampled via an ADC. Samples
are stored in a buffer and then sent through the ethernet cable
back to the computer for processing in MATLAB. The frame
synchronization of input and output is performed by inserting
long training sequence (LTS) preamble at input frames and
detecting correlation peaks at output frames. Based on the
processing of the received block, a DPD coefficient update
is calculated as in (6) such that the next filtering block can be
predistorted using the new α. This process continues iterating
until α converges.
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Fig. 7. Power spectral density with and without DPD of WARPLab
Experiment shown here at baseband with approximately 18 dB of suppression
at the IM3 sub-band.

B. WARPLab Results

For the WARPLab testing, a carrier aggregated LTE-A
uplink signal with QPSK subcarrier modulation is used. The
carrier separation is 6 MHz. The bandwidth of each CC is
1.4 MHz. The memoryless, single-tap block-adaptive sub-band
DPD is used. For the results presented here, the estimation
block is of length M = 528, and the DPD update interval
L = 1024.

The convergence of the DPD coefficient α is shown in Fig.
6. The real and imaginary parts both converge quickly and
smoothly. In Fig. 7 the spectrum is shown when broadcasting
with the final, converged coefficients from Fig. 6. Comparing
this to the red spectrum where no DPD is used, the result
shows 18 dB reduction in the positive IM3 spurious emission.
Note that here we did not use a transmitter filter to filter out the
negative IM3 spurious spectrum as the MATLAB simulation
results in Fig. 4 for simplicity. Certainly we can apply the
same DPD algorithm to suppress the negative IM3 spurious
emission as well.

PC WARP

Input data &
control signals

DPD design

FPGA

radio

radio
Power 
splitter

Spectrum 
Analyzer

Feedback training path
Predistorting path

Fig. 8. Experimental setup for real-time FPGA testing.

C. Real-time FPGA Implementation

We further implement our block-based, sub-band DPD
design on a Xilinx Virtex 6 FPGA to support real-time
DPD processing on actual mobile devices. The block-based
DPD architecture as highlighted in Fig. 2 is mapped and
implemented in the FPGA fabric of the WARP board. The
memoryless, single-tap, block-based DPD design is used. It is
developed using the Xilinx System Generator tools as an IP
core that could potentially be added to any wireless system
design.

The FPGA design has a loop delay of approximately
80 clock cycles. For the design, the estimation block size
M = 256, and L = 512 is the DPD update interval. This
choice in block lengths is short enough to facilitate rapid
convergence, and the difference between the filtering block
size and the learning block is greater than the loop delay as
required for proper convergence. The lengths of the blocks are
controlled via counters and powers of two were chosen to ease
computational complexity.

To compute the DPD coefficient update in (6), a complex
multiplication between the conjugate of the error samples and
the third order IM3 basis function samples is continuously
performed during the estimation block. The result of this is
accumulated and a right bit shift is used to approximate the
normalization scaling in (6). At the end of the estimation block
a subtraction is enabled and then the accumulator is reset until
the next estimation block.

The experimental setup for performing real-time testing
of the FPGA design is shown in Fig. 8. It is similar to
the WARPLab setup described earlier. However, MATLAB
is not used to control the design and do the processing.
Instead, the computer is only used for sending control signals
such as enable and reset to the FPGA via the USB-UART
communication port.

D. Real-time FPGA Results

For the FPGA design testing, a carrier aggregated LTE-A
uplink signal with QPSK subcarrier modulation generated in
MATLAB was stored in the block RAM (BRAM) of the FPGA
for testing. The carrier separation is 6 MHz. The bandwidth
of each CC is 1.4 MHz.

In Fig. 9, we see how the convergence of the DPD co-
efficient α behaves. In this figure, the FPGA design shows
rapid convergence of α and remains relatively constant. A
spectrum analyzer was used to view the spectrum for the
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Fig. 9. Convergence of DPD filter coefficient α in the FPGA hardware
implementation of the block-based sub-band DPD.

FPGA design. The spectrum analyzer output with and without
DPD is shown in Fig. 10. This figure shows the results at Wi-
Fi channel 6 (2.437 GHz) where the WARP board operates
for the experiment. These results show a 12 dB reduction in
the positive IM3 spurious emission.

Most of the multiplications in the architecture are done in
specialized hardware multiplier units of the Virtex 6 known
as DSP48E1 slices. When generated, the DPD module uses a
total of 242 DSP48E1 slices out of the 768 available DSP48E1
slices. Of this, many are being used by an order 100 FIR
filter to extract a block of the IM3 spurious emission samples
ỹIM3+

(n) at the PA output, which represent the block of error
samples as indicated in (7) and (8). Currently the FPGA design
focuses on performance. For better performance/utilization
tradeoff, the number of DSP48E1 slices could be significantly
reduced with further optimization.

The module runs at the same clock frequency as the ADC
and DAC of the WARP board which is 40 MHz. Certainly,
one can further enhance the data-rate performance of the
module by tuning the clock frequency on the Virtex 6 FPGA,
for example, to a maximum of 103 MHz. Once the DPD
coefficient α converges, the module introduces a small latency
of 13 additional clock cycles for passing the LTE signal from
BRAM to PA. This latency accounts for the digital predis-
tortion filtering in (4) using the estimated DPD coefficient α.
This low overhead for implementation shows the feasibility of
the sub-band DPD for real mobile systems.

VI. CONCLUSION

This paper proposed a new block-adaptive sub-band digital
predistortion (DPD) solution for the mitigation of unwanted
spurious emissions with spectrally noncontiguous signals and
showed real-time prototype implementation results on the
WARP platform. The algorithm shows considerable capabili-
ties to suppress the targeted spurious emissions in both simula-
tions and real-time experiments, with greatly reduced compu-
tational requirements compared to traditional DPD solutions.
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Fig. 10. Spectrum analyzer output with and without DPD in the FPGA
design showing approximately 12 dB of suppression at the IM3 sub-band.

In the experimental tests based on WARPLab, the algorithm
has been shown to suppress the spurious emissions on the IM3
sub-band by approximately 15 dB. The FPGA implementation
of the block based sub-band DPD design can achieve high
linearization performance under real-time requirements in a
practical transmitter. Many trade-off strategies are considered
in the hardware design to balance the robustness, performance
and complexity of the proposed sub-band DPD solution.

REFERENCES

[1] F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistor-
tion,” IEEE Microw. Mag., pp. 52–64, Dec. 2009.

[2] L. Sundström, A. Walln, and A. Khayrallah, “Carrier aggregation for
LTE-advanced: Design challenges of terminals,” IEEE Commun. Mag.,
pp. 76–84, Dec. 2013.
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