Structural Mechanics Computation of the Orion Spacecraft Drogue Parachute in Compressible-Flow Regime

Kana Yoshida1,2, Reha Avsar3, Aaron Hartmann3, Taro Kanaï4, Takafumi Sasaki4, Kenji Takizawa4 and Tayfun E. Tezduyar3

1Department of Mechanical Engineering, Tottori University, Tottori, Japan. 2TOMODACHI STEM Program @ Rice University, Houston, Texas, USA. 3Mechanical Engineering, Rice University, Houston, Texas, USA. 4Department of Modern Mechanical Engineering, Waseda University, Tokyo, Japan.
b13t064b@edu.tottori-u.ac.jp

Background
- Orion Drogue Parachute

- Field Tests
 - Drop test
 - Cost is about a million dollar for each test.
 - Wind-tunnel test
 - Scaling challenge due to coupling between the canopy deformation and the airflow.

Computational analysis can serve as a practical alternative.

Objective
- Study the pressure dependence and effect of time-step size, and damping coefficient.

Methods and Conditions
- Governing Equations
 - Structural mechanics equations
- Spatial Discretization
 - Finite element method

Base conditions
- Mach number: 0.5
- Altitude (ft): 35,000

Parachute configuration

Base Computation (Case 0)

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>(\Delta t(s))</th>
<th>(\eta (s^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,500</td>
<td>0.001</td>
<td>0</td>
</tr>
</tbody>
</table>

Case 0 results look reasonable. We test:
- different pressures
- different time-step sizes \(\Delta t\)
- different structural damping coefficients \(\eta\)
to see how the settled parachute shape changes.

Pressure Dependence

- Case 1

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>(\Delta t(s))</th>
<th>(\eta (s^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.001</td>
<td>0</td>
</tr>
</tbody>
</table>

- Parachute canopy in Case 1 is positioned lower than it was in Case 0.
- Parachute diameter in Case 1 is smaller than it was in Case 0.
- Parachute canopy in Case 2 is positioned higher than it was in Case 0.
- Parachute diameter in Case 2 is larger than it was in Case 0.

- Case 2

<table>
<thead>
<tr>
<th>Pressure (Pa)</th>
<th>(\Delta t(s))</th>
<th>(\eta (s^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000</td>
<td>0.001</td>
<td>0</td>
</tr>
</tbody>
</table>

Conclusions
- How the solution and the solution process vary
 - Pressure : Parachute diameter and vertical position change.
 - \(\Delta t\) : Computing time can be reduced by increasing \(\Delta t\).
 - \(\eta\) : The settled shapes are close, but \(\eta=140\ s^{-1}\) leaves out movement details, which are actually not needed.
- Larger time-step size?
 - With larger \(\Delta t\), we can reach the settled shape sooner, with almost the same shape as in Case 0, but with less computing time.

Future Directions
- Mesh resolution effect
- Fluid computations with the deformed shape

References

Acknowledgement
This research was conducted as part of the 2017 TOMODACHI STEM @ Rice University Program which is funded by a grant from the TOMODACHI Initiative, a program of the US–Japan Council. For more information on TOMODACHI program, see http://tmodachistem.rice.edu. We are grateful to Tatsuya Tanaka for using some of the background material from his poster.