
FreeCam3D: Snapshot Structured Light 3D with
Freely-Moving Cameras

Yicheng Wu1, Vivek Boominathan1, Xuan Zhao1, Jacob T. Robinson1,
Hiroshi Kawasaki2, Aswin Sankaranarayanan3, and Ashok Veeraraghavan1

1 Rice University, Houston TX, USA
{yicheng.wu, vivekb, xz61, jtrobinson, vashok}@rice.edu

2 Kyushu University, Fukuoka, Japan
kawasaki@ait.kyushu-u.ac.jp

3 Carnegie Mellon University, Pittsburgh PA, USA
saswin@andrew.cmu.edu

Abstract. A 3D imaging and mapping system that can handle both
multiple-viewers and dynamic-objects is attractive for many applications.
We propose a freeform structured light system that does not rigidly con-
strain camera(s) to the projector. By introducing an optimized phase-
coded aperture in the projector, we transform the projector pattern to
encode depth in its defocus robustly; this allows a camera to estimate
depth, in projector coordinates, using local information. Additionally,
we project a Kronecker-multiplexed pattern that provides global con-
text to establish correspondence between camera and projector pixels.
Together with aperture coding and projected pattern, the projector of-
fers a unique 3D labeling for every location of the scene. The projected
pattern can be observed in part or full by any camera, to reconstruct
both the 3D map of the scene and the camera pose in the projector
coordinates. This system is optimized using a fully differentiable ren-
dering model and a CNN-based reconstruction. We build a prototype
and demonstrate high-quality 3D reconstruction with an unconstrained
camera, for both dynamic scenes and multi-camera systems.

Keywords: Computational Photography; 3D Reconstruction; Coded Aper-
ture; Structured Light

1 Introduction

3D scanning is one of the core technologies in many systems. For many upcoming
applications, a depth map of the scene in the camera’s viewpoint is not sufficient
and it is equally important to localize the camera in a world-coordinate system.
This problem gets all the more important when we have multiple cameras roam-
ing in a shared space, as is the case in augmented reality, free-viewpoint videos,
and indoor localization applications.

This paper provides an approach to obtain depth maps and localize one
or many cameras, operating in a shared space, in a world coordinate system.
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Fig. 1. Overview. (Left) Illustration of our system. An optimized phase mask is placed
on the aperture of the projector to generate depth-dependent blur. The 2D pattern pro-
vides unique spatial features. (Center) Experimentally captured single-shot image by a
freeform camera and the regions showing projected patterns at different 3D locations.
(Right) Depth map and the camera (red) pose recovered with respect to the projector
(gray) coordinates. Our system allows for multiple unconstrained participants/cameras
to interact within the common world coordinate.

Our technique relies on a structured light system with a static projector that
is decoupled from the camera(s); this projector, hence, provides a fixed (world)
coordinate system for the scene against which cameras localize themselves. The
projector displays a single static pattern, which is observed in part or full by
any camera in the scene. Each camera decodes this image and localizes itself in
the world coordinate system and, further, estimates a 3D map of the scene in
its field of view. Since this is achieved with a single image, we enable a novel
framework for single-shot self-localization and 3D estimation.

The advances made in this paper rely on three key ideas. First, to permit
depth estimation without relying on triangulation, we use a projector that in-
duces a depth-dependent defocus blur on the pattern projected on the scene. To
further improve our ability to decode depth from the defocus blurs, we use an
optimized phase mask on the pupil plane of the projection optics. Second, we
design a projector pattern to help solve the correspondence problem between
the projected pattern and the imaged pattern, especially in the presence of the
defocus blur. The designed pattern is a Kronecker product between a random
binary image, that provides global context, along with a textured local pattern
that allows for local depth estimation via defocus. Third, we use a learning-based
formulate that takes in the input image and predicts the X/Y correspondence
as well as depth in the world coordinate system. The camera pose is estimated
from this depth map using Perspective-n-Point (PnP) algorithms.

The proposed technique offers numerous advantages against traditional struc-
tured light and SLAM techniques. First, we can handle dynamic scenes since, at
any time instant, only a single captured image is used for 3D estimation and self-
localization. Second, the estimated 3D scan is in the world coordinate system as
defined by the projector; this allows multiple cameras to share the same space
seamlessly — a feature that is unique to our approach. Third, unlike structured
light where the relative geometry between the camera and projector is known,
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our technique is uncalibrated and estimates the camera’s extrinsic parameters
with respect to the projector automatically.

We summarize our contributions as follows:

– We propose a novel system for single-shot 3D reconstruction that relies on a
fixed projector and freely-moving camera(s).

– Our system relies on an optimized phase mask in the projection optics. To
perform this optimization, we build a fully differential model that contains
the physical rendering (e.g., depth-dependent blurring and image warping)
for end-to-end training, where the goal is to decode the image acquired by a
camera. This simulation pipeline is directly applied to real experimental data
without any finetuning.

– We build a prototype and demonstrate compelling 3D imaging performance
using our prototype.

It is worth mentioning that, like other SL techniques, scene textures can
reduce the performance of our method by corrupting the projected pattern.
This can be reduced by operating in near-infrared wavelengths, similar to the
Kinect system, as well as training our models with textured scenes.

2 Related work

2.1 Active depth sensing techniques

Active methods recover depth information by illuminating the scene with a coded
light signal. Here, we provide three examples.

Time-of-flight (ToF). ToF cameras measure the depth based on the round trip
time of a modulated light signal reflecting from the object [29]. While ToF cam-
eras do provide single-shot depth estimates with little post-processing, both LI-
DAR and correlation-based approaches requir a strong coupling between the
sensor and the active illuminant. When operating in a shared space, the devices
tend to interfere with each other which causes artifacts in their reconstructions
[19]. Further, the estimated depth maps are typically in a local coordinate sys-
tem, which is not desirable for many applications.

Structured light (SL). SL is a triangulation-based method. The correspondence
can be obtained by temporal coding or spatial coding [34]. Temporal coding
methods are superior in spatial resolutions, but not suitable for dynamic scenes.
For spatial coding, researchers have explored to recover depth from a snapshot
based on the color [1, 23, 44, 38] or geometry [16, 40, 28] of the projected patterns.
A recent class of techniques aims to enable 3D scanning using smartphones; since
SL systems are usually fixed and static, whereas smartphones are mobile, there
is a need for self-calibration. However, current approaches in this space either
require additional information about the scene [7], or heavy computational cost
for bundle adjustment [6].
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Projection-based depth from defocus (DfD). There have been many approaches
that use DfD using projectors [9, 30, 42, 5, 12]; a key advantage of such techniques
is that we do not need to estimate correspondences. However, for a traditional
lens-based system, the encoding of depth in defocus is not robust. This problem
can be addressed by introducing a coded aperture in the projection optics [22,
41, 18, 17, 14]. These methods prevent the significant loss of information during
defocus, as well as making it possible to decompose the overlapping pattern
to obtain higher density and precision. It is worth pointing out that while our
hardware is similar to those DfD systems, our novel algorithm allows the camera
to be unconstrained while a standard DfD system requires the camera to be pre-
calibrated and fixed.

2.2 Indoor localization

The goal of indoor localization is to obtain a device or user location in an in-
door setting or environment. For a vision system, the camera pose consists of 6
degrees-of-freedom (DOF). A standard way to estimate camera pose is based on
PnP algorithms [2, 21], which rely on a set of 3D points in the world coordinate
and their corresponding 2D locations in the image. However, requiring known
3D points in world coordinates an unreasonable burden in many applications.

On the other hand, SLAM aims for estimating a map of an unknown envi-
ronment while simultaneously keeping track of the location of the sensor. One
key assumption is that the environment remains static when multiple frames
are captured from the sensor. It means that SLAM has difficulty handling dy-
namic scenes. In comparison, our proposed method only requires a single image
to recover the 3D environment as well as the camera pose.

2.3 Deep Optics

Recently, researchers have integrated deep learning algorithms to optimize com-
putational imaging systems. The key idea is to treat the optical system as the
first layer of a deep neural network. During the training, the free parameters of
the optics as well as the deep networks are optimized end-to-end. This concept,
often termed “deep optics”, has found applications in demosaicing [3], depth
estimation [43, 4, 13], extended depth of field [36], and high dynamic range [27,
37]. Our work follows the same spirit to optimize the phase mask design as well
as the neural network.

3 Forward model

The goal of this section is to derive a differentiable physical model to simulate the
captured camera image for any 3D scene and camera pose. As shown in Fig. 2,
there are three main steps in the forward model: generating the 2D pattern that
is projected, rendering the image in the projector’s viewpoint with its depth-
dependent defocus blur, and warping the pattern to create the captured image
from the camera view.
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Fig. 2. System pipeline. (Left) The forward rendering part builds a physics-based model
to simulate the captured camera image for any 3D scene and camera pose. (Right) From
the single-shot image Ic, we first predict the 3D location in the projector coordinate. We
then estimate the camera pose with a PnP solver. The pipeline is fully-differentiable,
and can be trained end-to-end.

3.1 Projector 2D pattern design

There are two requirements for the projected pattern. First, to enable lateral
(or x/y) localization, the pattern should contain unique local textures. Second,
to enable axial (or z) localization, the pattern contains rich local textures to
facilitate decoding of the defocus blur.

We propose to generate the pattern from a Kronecker product ⊗ between a
global pattern Iglobal and two local patterns I local1 and I local2 . The final projected
pattern ISp can be represented as

ISp = Iglobal ⊗ I local1 + (1− Iglobal)⊗ I local2 (1)

We set Iglobal as a random binary pattern. I local1 and I local2 are cross and square,
respectively. As we see from Fig. 2, the overall pattern still preserves a grid
structure, which can be a useful clue for the reconstruction algorithm to estimate
depth from the distorted image in the camera view.

3.2 Depth encoding with the phase mask

For a conventional lens-based SL system, the working depth range is limited
by the depth of field, because the pattern has to be sharp for stereo matching
algorithms. Instead, we estimate depth based on the defocus effect. Thus, the
working depth range is increased significantly. To amplify the defocus effect for
higher depth estimation, we insert a phase mask on the aperture plane so that
the point spread function (PSF) varies rapidly over depth while the PSF size
remains small. This approach follows a rich body of literature that improves
depth resolution using specialized phase masks [31, 35, 43].
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Point spread functions. For an incoherent system, the PSF is the squared mag-
nitude of the Fourier transform of the pupil function [11].

PSF (h, z) =
∣∣F{A exp[φM (h) + φDF (z)]}

∣∣2 (2)

The amplitude part A is a constant to maximize light throughput. The phase
part of the pupil function consists of two components. φM(h) is from the phase
mask, which is a function of the mask height map h. φDF (z) is from depth
defocus, which is a function of the scene depth z. The complete derivation can
be found in the supplemental material.

Coded pattern formulation. To simulate the coded pattern in the projector view
IBp (h), we separate the sharp pattern ISp based on the discretized the depth map
zp (21 layers in this paper), convolve with corresponding PSFs, and combine
them together. The formula is written as follows.

IBp (h) =
∑
zp

ISp (zp) ∗ PSF (h, zp) (3)

As a consequence, the final image is a differentiable function with respect to the
phase height map h, which is the optical parameter that we need to optimize
during the training stage.

Geometry dependence. The intensity of the coded pattern is also affected by
the scene geometry. Assuming the scene is Lambertian, the reflected intensity
depends on the orientation of the surface with respect to the projector θ as well
as the distance to the scene d =

√
x2 + y2 + z2. The final intensity should be

scaled as follows,

IBp (x, y) ∼ cos(θ(x, y))

d(x, y)2
(4)

3.3 Image warping

Once we have the image in the projector view IBp , we can synthesis the corre-
sponding image in the camera view Ic. This geometry-based image warping has
been widely applied for unsupervised depth estimation from stereo pairs [10] and
video sequences [45] in a fully differentiable manner.

There are two warping strategies that we can consider:s forward warping
WF and inverse warping WI . Forward warping is defined as the mapping from
the projector view to the camera view, which requires the depth map in the
projector view zp and the relative pose Tpc. Inverse warping is defined as the
mapping from the camera view to the projector view, which requires the depth
map in the camera view zc and the relative pose Tcp. The intrinsic matrices
of the projector and the camera are required for both methods. But these two
matrices are fixed and can be calibrated beforehand.

We generate the projector view using inverse warping by adopting the bilinear
sampling mechanism proposed in [15]. However, this technique does not correctly
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render occluded regions. Thus, we separately generate an occlusion mask using
forward warping. Specifically, we warp an all-ones matrix from the projector
view to the camera view in the forward mode, and label zero-value pixels as
black since there is no light projected on those pixels. The final warping formula
is as follows.

Ic =WI(IBp , zc, Tcp) · (WF (1, zp, Tpc) > ε) + U(0, Im) +N (0, σ2) (5)

To mimic the noise present in real experiments, we add in uniform distribu-
tion between 0 and Im = 0.05 and a Gaussian random variable with σ = 0.005
to model ambient/global light and read noise, respectively.

3.4 Dataset generation

As discussed in the above sections, to simulate the coded image in camera view Ic
accurately, there are three inputs required for a given scene: the depth map from
the projector view zp, the depth map from the camera view zc, and the relative
pose from the projector view to the camera view Tpc (Tcp is the inverse of Tpc).
Besides, Tpc should be different for different scenes since the camera is freely
moving. The most related datasets are for indoor localization or SLAM [24, 26].
However, these datasets are either low resolution, or lack of complex geometries
in the foreground, which are not suitable for our task.

Instead, we used the open-source 3D creation suite Blender to generate our
own dataset. Different geometric objects with various scaled and orientation are
randomly placed in the scene. Given a fixed scene, two depth maps are exported
as zp and zc, along with the random relative camera pose Tpc. The synthetic
camera has a 50-mm focal length and a 24mm×36mm sensor. The output depth
map is an 800×1200 matrix ranging from 0.7m to 0.95m. And the output camera
pose is a 4 × 4 matrix. The numbers of scenes that we generated for training,
validation, and testing elements are 4850, 900, and 200, respectively.

4 Reconstruction algorithm

Given a single captured image in the camera view Ic, the goal is to recover
both the 3D point cloud of the scene as well as the camera pose in the projector
coordinates. This enables unconstrained and freeform users (cameras) to perform
self-localization as well as estimate 3D shape under common coordinates.

The reconstruction pipeline is shown in the right part of Fig. 2. First,
we design convolutional neural networks to predict pixel-wise 3D map
(xcV iew

p , ycV iew
p , zcV iew

p ). Although the image is captured from the camera view,
the output 3D location should be in the projector coordinate since the pattern
is based on the projector. As a result, the 3D map is with respect to the pro-
jector but in the camera view. Then, we estimate the camera pose using PnP
algorithms based on the correspondence between the estimated 3D map and the
captured 2D map.
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4.1 Image preprocessing

To mitigate the intensity dependency of the surface normal and depth, we apply
local normalization (LN) as suggested in [32]:

ILN
c = LN(Ic, x, y) =

Ic(x, y)

µI(x, y) + ε
(6)

µI(x, y) denotes the mean in a small region (17×17 in our simulation) around
(x, y), and ε is a constant to avoid numerical instabilities.

4.2 Reconstruction network

Empirically, we observed that having one network for x, y estimation (XYNet),
and one network for z estimation (ZNet) provide the best performance. The main
reason is that x, y localization focuses on global features, while z localization is
based on local blur and distortion. ZNet directly outputs the absolute depth
values, and XYNet first outputs the relative angles (i.e., x/z and y/z) and then
convert to the absolute x, y position by multiplying the ground truth depth.
In this way, XYNet only needs to predict relative a 2D position without the
dependency on the depth. Both XYNet and ZNet are similar to UNet [33],
which is designed as an encoder-decoder architecture with skip connections. The
detailed parameters are listed in the supplementary material.

4.3 Loss function

In the input image Ic, there are occluded regions containing no information about
the scene. Those regions are masked out from the loss to force the networks to
learn only from the patterns.

Our loss function is composed of three individual losses: a root-mean-square
(rms) Lrms on x, y, z, a gradient loss Lgrad and a reprojection loss Lrp.

L = λ1Lrms + λ2L
z
grad + λ3Lrp (7)

Lrms is a combination of Lx
rms, L

y
rms, L

z
rms to directly force the networks to learn

the correct estimation. The gradient loss Lz
grad is applied on the depth map to

emphasize the network to learn sharp depth boundaries which is common in the
natural scene.

Lz
grad =

1√
N

(∥∥∥∥∥∂zcV iew
p

∂x
−
∂ẑcV iew

p

∂x

∥∥∥∥∥
2

+

∥∥∥∥∥∂zcV iew
p

∂y
−
∂ẑcV iew

p

∂y

∥∥∥∥∥
2

)
(8)

In our system, the depth information can be extracted from not only the
pattern defocus, but also the pattern perspective distortion since the camera and
the project are not co-located. To unitize the perspective distortion for depth
estimation, we add the reprojection loss Lrp between the actual image Ic and
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the predicted image Îc from ẑcV iew
p . The mathematical derivation of Îc(ẑ

cV iew
p )

can be found in the supplementary material.

Lrp =
1

N

∥∥∥Ic − Îc(ẑcV iew
p )

∥∥∥
1

(9)

Here, `1-norm is used since Ic is sparse.

4.4 Training details

During the training, the input image patch has a size 256×256 px, which is
randomly cropped from our dataset mentioned in Sec. 3.4. At test time, since
our networks are fully-convolutional, images size can be any multiple of 16. We
train the parameters of the optical system (i.e., the mask height map) jointly with
the digital convolutional layers. Empirically, we find that the result converges
better by training in two stages. First, we pre-train the mask height map and
ZNet with Lz

rms and Lgrad in a colocated setting where Tpc is identity. Second,
we train the entire model using all losses end-to-end.

4.5 Camera pose estimation

Our networks output the 3D coordinates of the scene from the camera’s point
of view. We can then calculate the camera pose by passing the 3D coordinates
and the corresponding 2D local image coordinates to a PnP solver. We use
OpenCV [2] implementation of PnP solver [8] made robust with RANSAC [39].

Conceptually, the (x, y) locations provided XYNet relies on analyzing the
spatial distribution of the Kronecker multiplexed pattern. This means that a
sufficiently large receptive field is required to estimate (x, y) accurately. However,
in regions with small features and significant depth variations, the projected
pattern is highly distorted, yielding erroneous (x, y) estimates. Assuming that
the majority of the scene is smooth without rapid depth variations, a robust
PnP solver can estimate the camera pose accurately.

Refinement of (x, y). While the estimation of (x, y) might not be good for specific
regions with small features and large depth variations, the z estimation is less
affected since ZNet extracts local blurring information. Thus, (x, y) is further
refined using the z estimation and the robustly estimated camera pose.

5 Simulation results

5.1 Optimized mask design and testing results

The top left of Fig. 3 shows the optimized phase mask height map that we obtain
from the training procedure. The corresponding PSFs at different depth ranges
are shown below. At the focused depth (0.8m), the PSF is a dot. As the depth
reduces, it splits to two dots vertically. As the depth increases, it splits to two
dots horizontally. This variation makes the robust depth estimation possible.



10 Y. Wu et al.

PSFs
0.70m 0.74m 0.80m 0.86m 0.94m

cI

cView
px cView

py

G
ro

un
d 

tru
th

R
ec

on
st

ru
ct

io
n

Er
ro

r m
ap

cView
pz

0.7

0.8

0.9

[m]

-0.2

0

0.2

[m]

-0.2

0

0.2

[m]

0.02

0.04

0

[m]
0.02

0.04

0

[m]

0.7

0.8

0.9

[m]

RMSE = 7.4mm RMSE = 5.1mm RMSE = 5.5mm

Recovered 3D scene with camera poseMask height map

1mm0

0.2

0.4

0.6

0.8

1

1mm

[μm]

Fig. 3. Simulation results. (Left) The learned phase mask and its corresponding PSFs
at different depths. Ic is an example of the input image in simulation. (Center) The
output of XYNet and ZNet, containing the 3D map in the projector coordinate. (Right)
The estimated point cloud of the scene in the projector coordinate. The estimated
camera pose (white) is close to the ground truth (green).

To evaluate the performance in simulation, we show the reconstruction results
of a testing scene - a cup and a handbag on a tilted floor (Fig. 3). The camera
captures the scene with the projector pattern as Ic. The trained networks out-
put the 3D location in the project coordinate for each pixel. Comparing with
the ground truth, the error is mainly near the depth boundary. The 3D point
cloud is shown in the right part of Fig.. 3. The estimated camera pose (color
in white) is also shown in the figure, which is close to the ground truth (color
in green). The error in translation is (0.013, 0.009, 0.016) meters, and the error
in rotation is (0.013, 0.013, 0.002) radians for pitch, yaw and roll. This exam-
ple demonstrates that we are able to accurately output the 3D scene as well
as the camera pose from just a single shot. More analysis can be found in the
supplementary materials.

5.2 Ablation study and comparisons

There are two important components in our projector system, the projector
pattern and the inserted phase mask. The results of the ablation study are shown
in Table 1. Although there are various single-shot patterns, many are not suitable
for comparison because our system requires the pattern to contain global context
with dense local features. For example, test A shows that a uniform grid pattern
is not able to provide the spatial uniqueness to give the x and y locations. And
the results from Kinect [28] and M-array [20] patterns are still worse than our
proposed Kronecker-multiplexed pattern. On the other hand, test D shows that
the depth estimation error increases dramatically when there is no mask. In this
case, the PSF becomes a disk function, and is identical at both sides of the focal
plane, which is hard to estimate depth from the pattern.
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Test Projector pattern Phase mask Lx Ly Lz

A Grid Optimized 52.1 50.6 8.7
B Kinect Optimized 15.8 18.1 9.2
C M-array Optimized 12.9 15.4 15.5
D Kronecker-multiplexed No mask 8.8 10.3 90.3
E Kronecker-multiplexed Optimized 8.3 10.1 6.1

Table 1. Ablation study (the unit of all the losses is mm)

Model Projector pattern Lz
c Lz

c with camera misalignment

A FreeCam3D 7.6 7.8
B Kinect + UNet 7.8 15.7
C Kinect + DispNet 7.4 14.8

Table 2. Model comparison (the unit of all the losses is mm)

We further compare our method with recent deep learning-based algorithms
for SL system. Since these algorithms require the camera to be pre-calibrated
and fixed, we generate another dataset with a fixed camera pose (10 cm base-
line). Model B is trained with UNet [33] and Kinect pattern, and model C is
trained with DispNet [25, 32] and Kinect pattern. Lz

c is the rms loss on recovered
depth in camera coordinate. As shown in the Table 2, our system has a similar
performance when the camera is well-calibrated and is more robust when the
camera pose is misaligned (12cm baseline).

6 Experiment results

Experimental setup. A picture of the setup is shown in the left part of Fig. 4.
We use an Epson VS355 LCD Projector (1280×800, 10µm pixel size) with a
50-mm f/1.8 standard prime lens. The phase mask is fabricated by the Reactive
Ion Etching (RIE) process. The diameter of the mask is 10.5mm with 70-µm
pixel size. The projector only projects green patterns, which mitigates the PSFs’
dependency on wavelength. The projector PSFs are calibrated experimentally for
any fabrication imperfection and system misalignment. The calibration process
can be found in the supplementary material. The networks are fine-tuned based
on the experimental PSFs.

At the camera side, our sensor is a 5472×3648 machine vision color camera
(BFSPGE-200S6C-C) with 2.4µm pixel size. To match the pixel size of the pro-
jector, the captured image is rescaled to the resolution of 1312×864. The imaging
lens is a 50-mm f/16 lens. The use of a small aperture in the camera makes its
depth field very large, and hence its PSF is near-invariant in our operating depth
range.
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Fig. 5. Experimental depthmap comparisons with single-shot structured light methods.

As we report in the supplementary material, the rms error in depth estimation
is 3.7 mm for 0.7m - 0.95m range.

Static scenes. We demonstrate the results for static scenes with a fixed cam-
era pose. Fig. 4 shows the recovered depth maps ẑcV iew

p . Our algorithm recov-
ers depth for both textureless scene and textured scene (with finetuning us-
ing the same dataset with random texture). By combining with the estimated
(x̂cV iew

p , ŷcV iew
p ), we show an example of the recovered 3D point cloud and cam-

era pose in Fig. 1.

Comparisons with related SL systems. To confirm the effectiveness of our
method, we compared our technique to related single-shot SL methods (Fig. 5).
The baseline for all the methods is 10 cm. For spatial-coding SL, we use a
pseudo-random dot pattern with the Kinect v1 stereo matching algorithm [28].
To further test the sensitivity of this method to calibration, we recover the
shape after adding a slight error in the rotation angle between the projector
and the camera (0.2 degrees). As we can see, even a small misalignment affects
the result significantly. On the other hand, there are self-calibrating single-shot
scanning techniques. Here we implemented one using markers [7]. Although the
3D shape was recovered, the resolution is extremely low. This is because the
pattern for self-calibrating SL is sparse in order to find correspondences in a
practical manner without the help of the epipolar constraint. Since only low
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resolution is recovered, all the high-frequency shapes such as the horn of the
unicorn object cannot be recovered and surfaces are all smoothed out.

Overall, our proposed method provides comparable depth resolution with the
spatial SL and better shape boundaries. While the spatial SL is sensitive to the
calibration misalignment, our technique does not require calibration, which is
one important strength of our algorithm.

Multi-camera systems. One advantage of our method is that the output
3D point cloud is in world coordinates. If multiple cameras are looking at the
same scene from different perspectives, their results can be directly combined
to create a complete reconstruction of the scene. Fig. 6 gives a sample scene
with three cubes on a table. Each camera only a part of the scene. However, we
can observe the similarity in the 3D map in regions that are in both views. All
three cubes are visible in the combined 3D map as shown on the right side of
the figure. As a byproduct, the left and right camera poses are estimated. This
example demonstrates interesting applications that involve multiple participants
in a shared scene.

Dynamic scene and moving camera. Since our method is single-shot, it
offers the ability to work for dynamic scenes with moving cameras. In Fig. 7,
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the first row shows hand gestures captured from a fixed camera. The second row
shows a paper stripe is swiped from the bottom to the top, while the camera is
shifted to the left. The full 3D reconstruction with camera pose can be found in
supplementary materials. All videos are recorded in a 30Hz frame rate.

7 Discussion and Conclusion

In this paper, we demonstrate FreeCam3D for 3D imaging of the scene where
the camera is not constrained to a rigid position relative to the projector. From
a single image captured by the camera, we estimate the 3D map of the scene
and the camera pose. These coordinates are in the shared world coordinates,
represented by the fixed projector. We built a prototype and demonstrated high-
quality 3D reconstruction with an unconstrained camera.

Practically, we envision that our system will be implemented using NIR light-
ing, like the Microsoft Kinect, so as to not interfer with human vision. Most
visible-light textures, which are from dyes, are practically transparent in NIR,
and are low-contrast. In such case, the texture on scene will be dominated by the
structured light. Therefore, we focus most of our results on texture-less scenes.
Finally, texture dependency can be mitigated by enhancing the training pipeline
to include textures. We provide such analysis in the supplementary materials.

Limitations. The advances made by the proposed system come with certain
limitations. First, the 3D estimates of our technique are of lower spatial resolu-
tion than what can be obtained with traditional structured light systems with
a similar camera and projector; this can be attributed to many sources includ-
ing the use of defocus blur for depth, the loss in resolution due to the design
of the projected pattern and, finally, the lack of knowledge of the pose of the
camera. Second, the intended applications of our system are in enabling shared
spaces that facilitate interaction of multiple participants in an AR/VR setting.
To ultimately realize such an environment, we also need to increase the field-
of-view (FoV) of the system. Our work can be extended to an increased FoV
by installing multiple fixed projectors, each with its optimized phase mask. The
projectors can be pre-calibrated with respect to each other, while the partici-
pants with cameras can move around in an unconstrained fashion. Regions of
occlusions can also be dealt with a multi-projector system. Finally, our experi-
mental results are captured in the visible light with texture-less objects. When
using this technique in a real application, the system can be implemented using
near-infrared (NIR) light and reap the dual benefits of being non-intrusive to
human vision and making most objects texture-less.
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