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Abstract— Congestive heart failure (CHF) is a chronic med-
ical condition, and early detection of acute cardiac events
caused by CHF can lead to life saving results. In this paper,
we present Blue Scale, a measuring device that allows both
patients and their physicians to monitor cardiac health at
home on a daily basis by providing the necessary feedback
for early cardiac event detection. Blue Scale measures elec-
trocardiography (EKG), systolic time intervals through photo-
plethysmography (PPG), weight, and whole body bioimpedance.
Collected datasets are transmitted to a central database using
a secure Wi-Fi 802.11b/g protocol for remote data analysis and
disease management. Following a test deployment in different
populations, we conclude that off-device signal processing is
required to ensure the accuracy of derived measurements.
Furthermore, our anomaly emulation experiments yield average
Z-scores of below 2 for most EKG and PPG related metrics, and
the resulting Z-scores also vary significantly across different
patients. These observations indicate that a standard 95%
confidence interval is not sufficient for attribute-by-attribute
anomaly detection, and any cardiac monitoring systems need
to be tailored to each individual.

I. INTRODUCTION

Congestive heart failure (CHF), the inability of the heart
to maintain its pumping capacity, is currently the leading
cause of death in the United States [1]. Studies have shown
that early detection can aid in preventing acute cardiac
events [2] [3], but many patients are unable to monitor key
heart metrics, such as an electrocardiogram, on a regular
basis. In fact, patient data is primarily collected in a clinical
or ambulatory setting, often only when a cardiac event
occurs or during a periodic check-up. Thus, patients may
have difficulty in managing their cardiac condition and in
recognizing early signs of impending cardiac events.

The Blue Scale device was developed to improve home-
based management of CHF by allowing daily measurements
of cardiovascular parameters and by analyzing their trend
over time at the individual level, thus providing valuable
feedback to the individual and their caregivers. Blue Scale
is a modified bathroom scale paired with a T-shaped pole
structure with hand electrodes and an optical sensor embed-
ded in the handlebars (Fig. 1). It represents the evolution of
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Fig. 1. A full-device view of the Blue Scale, which is used for wireless
point-of-care cardiovascular self-monitoring.

a hand-held device previously developed and tested [4], and
a preliminary version of this work was previously reported
[5]. Blue Scale measures electrocardiography (EKG), pho-
toplethysmography (PPG), whole body bioimpedance, and
weight.

The cardiovascular measurements are then remotely trans-
mitted and analyzed to detect feature and/or trend anomalies.
In this work, we specifically tested algorithms aimed at
identifying anomalous heart activities that could be early
indicators of an acute event. A pilot deployment of the
scales was carried out in three different locations in the
Houston, TX, area: at Rice University, at Technology for All
community center, and at a private residence. Twenty-two
healthy adult volunteers took daily measurements for one to
four weeks following an IRB approved protocol. The mea-
surement analysis concluded that the waveforms obtained
required further processing to remove the effects of noise,
and the metrics derived from the measurements showed that
norms varied considerably from person to person. Hence,
they need to be tailored to each individual.

The rest of the paper is organized as follows. Section
II presents how the Blue Scale works. Section III reviews
the data trends across different subjects and discusses some
basic anomaly experimentation with the scale. Finally, the
conclusions are presented in Section IV.



Fig. 2. Data flow model for the Blue Scale.

TABLE I
KEY HEALTH METRICS OBSERVED BY BLUE SCALE

Metric Name Description Data Origin Type Priority
QRS Interval Time interval of EKG waveform High

QRS range MATLAB R© script
RR Variation Variation of EKG waveform High

RR time interval MATLAB R© script
ST Interval Time interval of EKG waveform High

ST range MATLAB R© script
RR Interval Time interval of EKG waveform Med

RR peak range MATLAB R© script
PR Interval Time interval of EKG waveform Med

PQ range MATLAB R© script
Pulse Transit Time Time interval for PPG/EKG waveform Med
(foot, slope, peak) blood to travel from MATLAB R© script

heart to fingertip
Weight Body weight Scale measurement Low

Whole Body Body water Scale measurement Low
Bioimpedance measurement

II. MATERIALS AND METHODS

A. Design Concept

Blue Scale was designed for ease of use by an elderly
population who do not normally have a strong technological
background. For this reason, a large, color touchscreen
display and loudspeaker were embedded to optimize device-
patient communication. To take a measurement, the patient is
required to step onto the scale while barefoot and enter their
unique ID number on the touchscreen. The patient is then
instructed to grab the EKG handle electrodes and place their
right index finger into the fingerclip PPG sensor. While the
patient remains as still as possible, the scale measures EKG
and PPG signals for approximately 12 seconds at a sampling
rate of 1 kHz. The average whole body bioimpedance is also
measured during this phase. The patient is then instructed
to let go of the handlebars to guarantee an accurate weight
measurement. After the measurement process is complete,
the scale wirelessly transmits the raw dataset to a centralized
database for further processing and analysis. Immediately af-
ter data transmission, the readings and all extracted analytical
features are available for display on a secure website. The
general data flow model is shown in Fig. 2.

B. Health Metrics

Blue Scale is capable of acquiring 3-lead EKG derivations,
i.e. left to right hand (lead I), left hand to right foot (lead II),
and right hand to left foot (lead III). Lead I was typically
the least noisy reading, which was chosen for further analysis
and feature extraction.

Fig. 3. Unfiltered (top) and filtered (bottom) EKG signals with P-QRS-T
detections.

In this project, eight key health metrics, including the
post-signal processing metrics, were computed as shown in
Table I. The priority column for this table indicates the
importance of a particular metric in diagnosing a significant
cardiac event. These metrics can be classified into two broad
categories: direct indicators of cardiac function and indirect
indicators of cardiac compensation. Direct indicators of car-
diac function are metrics derived directly from EKG or PPG
signals and are reliable early indicators of a cardiac event
[6]. On the other hand, indirect indicators of compensation,
such as weight and bioimpedance, are deemed to be lagging
indicators of a cardiac event [7]. Hence, since compensation
indicators occur later than cardiac output indicators, an ideal
algorithm of cardiac anomaly detection would be primarily
focused on cardiac output indicators so that anomalies may
be detected early on. The priorities indicated in Table I are
the results of this classification.

C. Data Processing

The EKG and PPG datasets collected by the scale carried
a substantial amount of noise, which typically impeded
calculation of the metrics directly from these waveforms.
Therefore, in order to minimize processing time on the device
and to allow advanced noise filtering, signal processing
was executed on a remote server after the physiological
measurements were transmitted to the database (Fig. 2).

In order to filter out low-frequency baseline drifts and
other sources of noise, low pass and high pass Butterworth
filters were employed on both waveforms in MATLAB R© [8].
The resulting passbands were 1-20 Hz and 0.5-20 Hz for the
EKG and PPG signals, respectively. The cutoff frequencies
were determined experimentally using datasets from multiple
patients. As shown in Fig. 3, the application of these filters
substantially reduced noise levels, thus allowing for easier
metric calculations.

D. Key Metric Detection

Most of the top-priority metrics were obtained from the
EKG waveform, the features of which are directly related
to events of a cardiac cycle. The QRS complex is produced
by ventricular depolarization (i.e., contraction) in which the



Fig. 4. EKG QRS missed detections for a volunteer with high T peaks
and deep S dips. Missed detections are at approximately 2.4 and 6.4 s.

R-wave is the main peak, while the Q-wave and S-wave
are the smaller dips occurring immediately before and after
the R-wave peak, respectively. To the left and right of each
QRS complex, two smaller peaks can be detected: the P-
wave associated with atrial depolarization and the T-wave
associated with ventricular repolarizarion, respectively.

Unlike conventional interval definitions which are defined
from baseline to baseline, the EKG wave time intervals
measured by the Blue Scale are defined as Q min to S min
(QRS interval), S min to T max (ST interval), and P max to Q
min (PR interval). These are clear points that can be used to
standardize the EKG and PPG metrics that are less sensitive
to any remaining noise following filtering. Finally, the RR
interval (or heart period) refers to the time interval between
successive R-wave peaks (or heart beats), and RR variation
refers to the standard deviation of such time interval.

The QRS detection algorithm works by stepping through
the entire waveform in short non-overlapping windows (0.15
seconds) to find the absolute maximum point in each window.
If the maximum within a window is a local maximum (i.e.,
its neighboring points smaller), then such point is considered
as a candidate peak for an R-wave. Similarly, the algorithm
finds the local minima on each side of the R-wave as the Q
(left) and S (right) dips of the QRS complex.

The true QRS complexes are distinguished from the false
positives by looking at the QR and RS amplitudes and slopes.
If the complex amplitude is within two standard deviations
of the mean, and if the absolute slopes are greater than the
mean, the QRS complex is accepted as valid. This approach
worked well since the QR and RS slopes are the sharpest
slopes after noise filtering, and it helped minimize false
positives from any remaining noise after filtering.

After finding the true QRS complexes, the interval from
one complex’s S-wave to the next’s Q-wave is partitioned
in half. The maximum of the left partition is used to
approximate the first complex’s trailing T-wave, while the
maximum of the right partition is used to approximate the
second complex’s leading P-wave. As seen in Fig. 3, this
is generally a good approximation, but it can occasionally
identify the wrong point and skew the ST and PR intervals.

Occasionally, the QRS detection algorithm failed to detect

Fig. 5. Visualization of pulse transit time foot and peak [9].

a QRS complex, as seen in the EKG waveform in Fig. 4.
The QRS detection algorithm minimizes the effect of these
missed QRS complexes. If an RR interval is larger than
1.5 seconds (normal RR interval ranges from 0.6-1 seconds
[10]), then that interval is not considered in the calculation
of the average RR interval. Losing an entire QRS complex
also minimally affects the measured QRS time.

Pulse transit times (PTTs) are defined as the time interval
between the EKG R-wave and PTT foot, PTT maximum
rising slope, and PTT peak, respectively (Fig. 5, [9]), which
describes (in various ways) the time interval it takes blood
to reach the fingertip from the heart. For the pulse transit
times, no single QRS complex can be used more than once
when calculating the PTT. This means that the effect of a
missed QRS complex will only factor into the mean PTT
once, which minimizes the effect on the calculated average.

The weight and whole body bioimpedence, obtained di-
rectly from the scale, did not need further calibration.

III. RESULTS

Because all the volunteers for this project are healthy
adults, we expected each volunteer’s EKG waveforms to
follow the commonly observed patterns. Although most vol-
unteers did follow this trend, a few did not. One volunteer’s
EKG readings were noticeably different (Fig. 4).

This volunteer’s EKG regularly featured deep S-waves
and irregularly tall T-waves. Although the QRS detection
algorithm was able to account for most variations in the
EKG contour, the detection of the QRS complex failed
occasionally, affecting the derived metric accuracy. Although
the script accounted for missed QRS complexes fairly well
(noticeably, no P-waves and T-waves were identified when-
ever a QRS complex was not detected), individual patients
may need specially tuned filtering to optimize measurement
accuracy. This emphasizes the importance of establishing a
patient-by-patient baseline.

In addition to the contour of the EKG and PPG, each
volunteer showed noticeably different ranges for some at-
tributes and similar ranges for others, as seen in Table II. In
particular, the QRS, ST, PR, and PTT intervals were fairly
consistent, with only slight variations across the selected
subjects. RR interval and variation both showed a relatively
larger magnitude of variation. Some similarity is expected



TABLE II
MEAN AND STANDARD DEVIATION OF A SUBSET OF THE KEY HEALTH METRICS FOR FOUR DIFFERENT VOLUNTEERS.

Volunteer QRS Time RR Interval RR Variation PTT Peak PR Interval ST Interval
(s) (s) (s) (s) (s) (s)

1 0.076 +/- 0.001 0.696 +/- 0.136 0.007 +/- 0.024 0.314 +/- 0.038 0.102 +/- 0.021 0.173 +/-0.020
2 0.075 +/- 0.002 0.547 +/- 0.034 0.004 +/- 0.010 0.315 +/- 0.035 0.122 +/- 0.025 0.149 +/- 0.016
3 0.076 +/- 0.001 0.693 +/- 0.155 0.049 +/- 0.174 0.275 +/- 0.008 0.099 +/- 0.014 0.143 +/- 0.012
4 0.067 +/- 0.001 0.705 +/- 0.103 0.030 +/- 0.035 0.335 +/- 0.039 0.112 +/- 0.023 0.187 +/- 0.027

TABLE III
SELECT Z-SCORE OBSERVATIONS FROM THE ANOMALY EXPERIMENTS.

Scenario Metric Average Z-Score
Weight Up Weight 6.22 +/- 3.85

Weight Down Weight -44.89 +/- 34.34
Exercise RR Average -1.34 +/- 0.53
Exercise QRS Average -1.38 +/- 0.92
Exercise PTT Peak Average -2.56 +/- 2.45

Nap/Relax RR Average 0.22 +/- 0.43
Nap/Relax QRS Average 0.44 +/- 0. 03
Nap/Relax PTT Peak Average -0.12 +/- 1.10

given all the volunteers in this subset are between 18 to 25
years old, but the variation present is difficult to predict.
Hence, initializing a unique baseline for each patient is key
before attempting any anomaly detection.

To emulate an anomaly for a healthy patient, four of the
volunteers were asked to take four special measurements
after completing a four week calibration period. The goal
of this experiment was to find potential anomaly detection
thresholds for each metric. Each volunteer added weight,
reduced weight, exercised before a measurement, and slept
for a short time before a measurement. Afterwards, a Z-score
was calculated for all metrics for each scenario. The Z-score
is defined as (metric - mean)/(standard deviation).

Table III shows the results. As expected, the weight Z-
score is noticeably large and above 5. However, the nap/relax
scenarios have non-noticeable effects. This makes sense be-
cause volunteers normally take measurements at their resting
heart rate, meaning relaxing and napping can only affect a
person’s heart rate and metrics slightly.

On the other hand, exercising does have a noticeable
effect, but the average deviation is below or around 2 Z-
scores. This means that a typical 95% confidence interval
is not sufficient for detecting changes in EKG and PPG
attributes, and tighter thresholds are needed. Furthermore,
the large standard deviations in Z-score for most of these
observations re-emphasizes that no single anomaly threshold
is sufficient for all people. Anomaly detection thresholds
should depend on both the attribute and the person.

IV. CONCLUSION

The Blue Scale paradigm of daily self-measurements is a
promising way to give patients and doctors regular feedback
on a patient’s cardiovascular health. We developed an off-
device MATLAB R© script that reliably derives several key
health metrics for most patients available wirelessly for
physicians to monitor their patients’ daily health. However,
our test deployment emphasizes the importance of tuning
any scripts and anomaly thresholds to the patient because an
anomalous looking EKG or PPG waveform or metric for one
patient could actually be his or her healthy norm. Following

individual calibration, the models can then be extended to an
online setting.

In the future, we hope to test the Blue Scale system
on a wider scale, with volunteers who have cardiovascular
disease. These volunteers can then be clustered to see if cer-
tain demographics reliably follow the same patterns. Future
deployments will also let us conduct an in-depth performance
evaluation of the system. We also hope to provide pa-
tients with easy-to-access feedback, potentially on a patient-
oriented web page or even on the scale’s display monitor
immediately following a measurement. We will also imple-
ment an algorithm that combines the measured attributes to
compute each patient’s norm for complete anomaly detection
instead of just attribute-by-attribute detection.
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