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Abstract—Memristive devices have been shown to have low
leakage power, non-volatile storage capability and high storage
density. In addition, by using stateful logic approaches, hybrid
CMOS nano-crossbar arrays offer functionalities such as arith-
metic operations, which make them ideal target for in-memory
computing. Multiplexers are useful circuits that are used in a
wide variety of applications such as encoding-decoding, signal
routing, data communications and data bus control. In this paper,
we report the first study on implementation of multiplexers using
1S1R crossbar arrays. An efficient mapping of the multiplexers is
presented, with logarithmic delay, in terms of number of control
signals— n. Physics-based circuit simulations are performed to
validate our approach.

I. INTRODUCTION

Redox-based resistive switches (ReRAM) are one of the
most promising non-volatile storage technologies [1]. Further-
more, the capability of such devices to perform stateful logic
operations [2], [3], [4] enable it as an ideal platform for in-
memory computing, in a bid to alter the traditional von Neu-
mann computing model. Multiple arithmetic circuits [5], [6],
[7] and programmable processors [8] have been implemented
using CMOS-ReRAM hybrid crossbar platforms.

In large passive crossbar arrays low ohmic paths can cause
additional currents, so called sneak paths. This sneak paths can
be especially for the read-out major problems, since they can
add up and change the read-out result from a ’0’ to a ’1’. To
prevent these and enable large passive crossbar arrays devices
with a higher selectivity, e.g. a complementary resistive switch
(1CRS), consisting of two anti-serially connected cells or a
selector in series to the ReRAM device, are needed [9], [1].

Efficient multiplexer synthesis is a challenging problem in
conventional technologies [10]. Multiplexers are circuits that
are used to select one from many data lines, based on the value
of the control signals. Multiplexers are used in a wide variety
of applications such as signal routing, data communications
and data bus control. Priority multiplexers find applications
where the selection lines have a defined priority and based on
the priority of the selection lines, the data signal is chosen.

This paper presents the efficient implementation of multi-
plexer and priority multiplexer using 1S1R arrays, with an
optimal delay of O(log2n) cycles, where n is the number of
control signals, for both circuits. We also present the results of
circuit-simulation of the proposed schemes by using VerilogA
models of the ReRAM devicess and analysis of the circuits

in terms of number of devices, number of cycles and energy
consumption.

A. Logic Operations of 1S1R devices

The ReRAM device is operated using two input lines – the
wordline wl and bitline bl which modifies its internal state S.
In Fig. 1, the truth table of a CRS-logic device is shown. The
state switches only for two input combinations, which is also
clearly observable in the FSM.
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Fig. 1: 1S1R device logic operation realizing Majority.

It can be observed that next state NS of the device is
nothing else but the function M3(S,wl, bl) [8], where M3 is
the 3-input Boolean majority function. Thereby, the internal
state S of the device acts as an input when computation of
the next state NS. The Boolean majority function along with
invertor is a universal logic operator and therefore can be
utilised to implement any Boolean function. In this work, the
challenge is to efficiently implement the multiplexer function-
alities with M3 operator. A further challenge is to minimize
the device count and overhead of crossbar array operations,
which directly results into the area complexity.

II. MULTIPLEXER

A multiplexer (MUX) with 2n input data signals requires n
control signal to select the desired input signal. We explain the
working principle of a 4-input multiplexer and its implemen-
tation using 1S1R arrays, which can be extended to a general
case. The schematic of a 4-input multiplexer is shown in Fig. 2
(a) and the corresponding Boolean equation presented in (1).

f4 = s0.s1.a0 + s0.s1.a1 + s0.s1.a2 + s0.s1.a3 (1)

, where aj represent the data signals and si are the control
signals. Operators . and + represent Boolean AND and OR
operations respectively. a represents the negated value of
Boolean variable a.
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Fig. 2: 4-to-1 MUX (a) Schema (b) Implementation using
2-to-1 MUX

We construct the 4-to-1 MUX by using a hierarchy of
2-to-1 MUX operations, as shown in Fig. 2. In general,
an n-to-1 MUX can be constructed using log2(n) levels of
2-to-1 MUX, which allows the multiplexer to complete oper-
ation in O(log2(n)) cycles. A 2-to-1 MUX is represented by
the Boolean equation 2, where a0 and a1 are the data signals
and s is the control signal.

f2 = s.a0 + s.a1 (2)

A. Multiplexer steps

Without loss of generality, we explain the proposed schema
using 2-bit wide data signals for a 4-to-1 multiplexer, as shown
in Figure 4.
Step 1: All the 1S1R arrays are initialized to a known state 0
by applying ‘0’ to the wordlines and ‘1’ to the bitlines.
Step 2: The select signal s0 is loaded into array A0 and A2,
and the inverted signal s0 is loaded to array A1 and A3.
Step 3: The data aij is ANDed with the contents of device Aij

by applying aij to the wordlines and ‘1’ to the bitlines. The
resultant values are shown as vij , where i is th array number
and j is the bit number of the data.
Step 4: The second product term of the 2-to-1 MUX is read out
and ORed with the first product term to complete the first level
of 2-to-1 MUX operations. The resultant values are shown as
f ij
2 .

Step 5: For the second level 2-to-1 MUX, the result of the
first level is ANDed with the appropriate si control signal.
The resultant values are shown as wij .
Step 6: Similar to step 4, second product term of the second
level 2-to-1 MUX is read out and ORed with the corresponding
first product term. This completes the 4-to-1 MUX operation
and the result is stored in the array A0.
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Fig. 3: Priority multiplexer (a) Schema (b) Truth table
B. Analysis of the proposed scheme

For n control signals and 2n data signals each of width
m-bits, the proposed scheme requires 2n 1S1R arrays, each
with m wordlines and 1 bitline.

Sl# A0 A1 A2 A3
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Fig. 4: Steps of 4-to-1 multiplexer

Two cycles are required for initializing and loading data into
the arrays. For completing operation, each 2-to-1 MUX levels
requires two cycles— one for performing the AND operations
to obtain the product terms and one for performing the OR of
the product terms. There are log2(n) levels of 2-to-1 MUX
therefore the schema would require 2 + 2log2(n) cycles.

III. PRIORITY MULTIPLEXER

A priority multiplexer selects from one of the n data signals,
based on the n control signals, which have a predefined
priority. Basically, the priority multiplexer selects input signal
ak, if control signal sk is ‘1’ and none of the other control
signals with priority more than sk are ‘1’. If none of the select
signals are ‘1’, then the output is invalid. A 4-bit priority
multiplexer is represented by the truth table in Fig. 3 (b) and
the following equations.

p4 = s0.a0 + s0.s1.a1 + s0.s1.s2.a2 + s0.s1.s2.s3.a3 (3)
V = s0 + s1 + s2 + s3 (4)

where sj and ak represent the control and data signals re-
spectively. Priority of control signal sj is greater than sk, if
j < k. The output signal valid V is ‘1’ when the output is
valid, otherwise it is low.

We propose a O(log2(n)) implementation for priority mul-
tiplexer with n data signals. To obtain a nearly balanced tree
structure for computation, the equation for pn is recursively
decomposed into two parts, such that each part has equal
number of minterms. The terms common in each decomposed
part are factored out and . these parts are decomposed again.
The decomposition is continued till only two minterms remain
per part.

The factored terms are of the form s0.s1...sk, where k is
an even number. This can be re-written as s0 + s1 + ... + sk
which can be easily computed using a OR-reduction tree
implemented using M3 gates followed by a NOT operation.

We demonstrate the decomposition using 4-to-1 priority
multiplexer. In the first stage, the equation 4 is decomposed
into two parts which have to be ORed to get result of the
overall equation :



1) s0.a0 + s0.s1.a1
2) s0.s1.s2.a2 + s0.s1.s2.s3.a3

= s0 + s1.(s2.a2 + s2.s3.a3)

The first decomposed part of the equation has only two
terms and hence is not decomposed any further. The second
part has common term s0.s1, is factored out and is expressed
as s0 + s1. The remaining part of the equation has two terms
which completes the decomposition.

Recall that each 1S1R device can be interpreted as
M3(S,wl, bl) gate i.e. a 3-input majority gate with the third
input negated and S, wl and bl represent the internal state,
the wordline and the bitline of the device. The decomposed
equation can be implemented using 1S1R devices as shown in
the Fig. 5, where all the nodes at the same level are evaluated
in the same clock cycle. The square nodes represent the inputs
to the priority multiplexer and the circles represent the M3

computation nodes. The dark grey trapezoid nodes state the
ReRAM array name in which a M3 node is evaluated. Due to
lack of space, we do not show the steps explicitly.

A. Analysis of the proposed scheme

The number of cycles required by the proposed scheme for
computation of pn can be stated using the following recursive
formulation. Let T (n) be the number of cycles required for
completing operation of a priority multiplexer with n data
signals, where n = 2k, k ≥ 1 and is an integer.

T (n) =

{
T (

n

2
) + 2 if n > 2 (5a)

3 for n = 2 (5b)

The priority multiplexer equation is decomposed into two
parts with half the number of product terms and hence T (n

2 )
cycles would be required to evaluate each part simultaneously,
one cycle is required for ANDing the second part of the
equation with the factored terms and one cycle is required for
ORing the two parts of the equation to compute the overall
equation. For evaluating a priority multiplexer with two data
signals, 3 cycles are needed, which forms the base case of
the recursive formulation. Additionally in the beginning, two
cycles are needed for initialization of the devices and for
loading initial state of the devices. Hence, the number of
cycles for computing pn of a priority multiplexer with n data
signals is T (n) = 2log2n+ 3. By using a AND-reduction tree
for computation of status signal V and considering 2 cycles
needed for initialization and loading of initial states, log2n+2
cycles would be required. Since computation of pn and V can
be performed in parallel, the priority multiplexer would require
log2n + 3 cycles to complete operation.

The number of devices D(n) required for computation of
pn with n data signals can be computed as follows:-

D(n) =

{
2D(

n

2
) +

n

4
if n > 2 (6a)

2 for n = 2 (6b)

D(n
2 ) devices are required for computation of the each part

of the decomposed equation. n
4 devices are required for

computation of the OR of the n
2 variables in the factored

out term. There are log2(n
4 ) factored out terms with two

variables in the recursive formulation, for which an additional
device is required for inverting the OR of the variable in
the factored out term, which require an additional log2(n

4 )
devices. The OR of the variables (#variables > 2) in
other factored terms can be inverted by reusing the devices,
without contributing additional delay. For computation of
status signal V using a OR-reduction tree, n

2 devices are
required. Therefore the total number of devices required is
n(3+log2(n))

4 + log2(n
4 ) + n

2 = O(nlog2(n)).

IV. SIMULATION

This section presents the results of circuit simulation, using
Cadence R© Spectre R©. To account for the very small filament
radius of the median kinetic device in [11], the resistance R0

is chosen to be 69 kΩ. The voltage is adjusted to 2.4V to
enable a clock frequency of 50ns.

In Fig. 6, the simulation results of the multiplexer scheme,
for 2-bit input data a0 = 01, a1 = 10, a2 = 00 and a3 = 11
with control signal s1s0 = 01. The orange waveforms depict
the voltages applied to the wordline and bitlines of the arrays,
while the green waveforms depict the information read out in
form of current. The result, available in array A0 is read out
and is 10 as expected. The simulation results of the priority
multiplexer for 2-bit input data signals — a0 = 01, a1 = 10,
a2 = 00 and a3 = 11, with control signals s3s2s1s0 = 0011,
is shown in Fig. 7. As signal s1 has greater priority than s0,
signal 10 is the output signal, available in array P0 and since
atleast one control signal is 1, the output valid signal V is 1,
which is available in array S0. Both the schemes have been
tested exhaustively for correctness using all possible input
combinations. For the specified inputs, the multiplexer and the
priority multiplexer schemes consume 73 pJ and 105.24 pJ,
respectively.

V. CONCLUSION

In this work, efficient in-memory schemes with O(log2n)
delay for multiplexer and priority multiplexers have been
proposed using 1S1R arrays. We benchmarked our proposal
by circuit simulations of multiplexer and priority multiplexer
with 2-bit data signals and presented estimates of delay, area
(in terms of device count) and energy. We believe this work
will be useful for design of larger circuits, where multiplexers
play an important role such as, encoding-decoding circuits.

REFERENCES

[1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive
switching memories–nanoionic mechanisms, prospects, and challenges,”
Advanced Materials, no. 21, pp. 2632–2663, 2009.

[2] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[3] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Be-
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Fig. 6: Multiplexer Simulation Waveforms
[The orange waveforms represent the voltage applied to
input lines (wordlines/bitlines). The green waveform represent the
information stored in the device, read out in form of current.]
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Fig. 7: Priority Multiplexer Simulation Waveforms


