Fast Comparator Implementation using 1S1R ReRAM Crossbar Arrays

Debjyoti Bhattacharjee\(^1\), Anne Siemon\(^2\), Eike Linn\(^2\), Stephan Menzel\(^2\), and Anupam Chattopadhyay\(^1\)

Email : {debjyoti001,anupam}\@ntu.edu.sg, {siemon,linn}\@iwe.rwth-aachen.de, st.menzel\@fz-juelich.de

\(^1\)Nanyang Technological University, Singapore
\(^2\)Institut für Werkstoffe der Elektrotechnik (IWE 2), RWTH Aachen University, Germany
\(^3\)Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Germany

Abstract—Low leakage power and non-volatile storage capabilities have marked memristive devices as promising technology for future data storage. Furthermore, capability to natively realize universal Boolean operators prompted researchers to exploit it for Programmable Logic-in-Memory (PLiM), deep neural network and neuromorphic computing platforms. Proliferation of such platforms rely on efficient mapping of key computing blocks onto ReRAM crossbar arrays. Comparators are fundamental circuits forming the basis of decision logic in processing units. In this paper, we report the first study on implementation of circuits forming the basis of decision logic in processing units. These propositions fall grossly in the classes of general-purpose Programmable Logic-in-Memory (PLiM) computing platform [9], machine learning applications within the broader perspective of neuromorphic computing domain [2], [5], [7], [8] and finally, a series of dedicated circuit proposals [1], [12]. For either of these propositions, localized decision-making circuits play an important role, which is achieved in traditional CMOS designs using comparator. To the best of our knowledge, there has been no proposition of in-memory comparator circuits for ReRAM crossbar array, which we address in this paper.

I. INTRODUCTION

One of the most promising technologies for logic and memory applications is redox-based resistive switches (ReRAM) [10]. Large passive crossbar arrays can be realized by means of devices such as a select device in series to a memristive device (1S1R) or a complementary resistive switch (1CRS), consisting of two anti-serially connected cells, that prevent parasitic currents [3]. Multiple feasible logic-in-memory designs have been proposed using ReRAM cells. These propositions fall grossly in the classes of general-purpose Programmable Logic-in-Memory (PLiM) computing platform [9], machine learning applications within the broader perspective of neuromorphic computing domain [2], [5], [7], [8] and finally, a series of dedicated circuit proposals [1], [12]. For either of these propositions, localized decision-making circuits play an important role, which is achieved in traditional CMOS designs using comparator. To the best of our knowledge, there has been no proposition of in-memory comparator circuits for ReRAM crossbar array, which we address in this paper.

An identity or equality comparator, compares the inputs and produces an output HIGH if both of the inputs are equal. Such circuits can be used in electronic locks and security devices, where a binary password consisting of multiple bits as input, has to be compared against a preset password. A magnitude comparator compares \(n\)-bit binary strings and outputs HIGH if the magnitude of the first input is greater than or equal to the magnitude of the second input. For example, a magnitude comparator is required for checking if a value is greater than a specified threshold to initiate further action. The schema for identity and magnitude comparator for 4-bit data signals is shown in Fig. 1.

This paper presents an efficient implementation of identity and magnitude comparators, using ReRAM arrays, with an optimal delay of \(O(\log_2(n))\) cycles using \(O(n)\) devices, for both the circuits. We also present the results of circuit simulation of the proposed schemes and analyze the circuits in terms of number of devices and number of cycles.

![Fig. 1: Schema for (a) Identity comparator (b) Magnitude comparator](image-url)

II. MODELLING AND LOGIC CONCEPTS OF ReRAM DEVICES

In this work, a Valence Change Mechanism (VCM) ReRAM device and an additional selector are assumed. The ReRAM device used in the performed simulations, is represented by means of VerilogA model. The model proposed in [11] has been used, with the parameter set for median kinetics, where \(R_0\) was changed to 69 kΩ. The selector device was fitted to the presented selector of [6]. The simulations were performed using Cadence® Spectre®.

For logic operations, the device can be interpreted as a finite-state-machine (FSM), as shown in [4]. This FSM presents the transitions and states corresponding to the input signals applied to the two terminals offered by the device, shown in Fig. 2 (a). Here terminal one is connected to the wordline (wl) and terminal two is connected to the bitline (bl). Only two transitions are feasible one from the 0 state to the 1 state by applying a ‘1’ to the wl and ‘0’ at the bl, whereas the other transition starts from the 1 state and ends at the 0 state by applying a ‘0’ at the wl and a ‘1’ at the bl. All other input combinations won’t change the state. The 1 state is represented by a low resistive state (LRS) and the 0 state by a high resistive state (HRS), so that the current level at read-out steps determine the stored values.
Step 3: In this step, $m_i = a_i \oplus b_i$ is computed in the arrays X_i.

In the array Y, $n_i = a_i + b_i$ is computed.

Step 4: The XNOR(x_i) for each bit position is computed in this step by ORing m_i and $\overline{n_i}$ in array X_i.

Step 5: The results pairs from the previous step x_0, x_1 are ANDed and x_2, x_3 are ANDed in this step.

Step 6: In the final step, the final output is computed by ANDing x_{01} and x_{23}.

In general, the identity comparator compares the individual bits of the inputs using XNOR operations to determine if the corresponding bits are identical. Thereafter, a balanced AND-tree is used to determine if the two input data signals are equal. For the 4-bit identity comparator, steps 5-6 performs the AND-tree computation.

B. Analysis of the proposed scheme

For designing n-bit identity comparator, $2n$ devices are required - n arrays of size 1×1 device and one array with n-wordlines and 1 bitline i.e. with n devices. Two cycles are required for initializing and loading data into the arrays. Two cycles are needed to compute the XNOR of individual bits of the input data signals. Thereafter, $\log_2(n)$ cycles are needed to compute the AND of the XNOR results of the individual bit positions, since we use a balanced AND tree for computation. Thus, the scheme requires $4 + \log_2(n)$ cycles for computing the required function.

IV. MAGNITUDE COMPARATOR

A n-bit magnitude comparator compares two n bit signals A and B and gives an output HIGH if $A \geq B$, otherwise LOW i.e. the value represented by the bit string A is greater than or equal to the value represented by the bit string B. For simplicity, we assume that $n = 2^k$, $k \in \mathcal{N}$. The magnitude comparison can be performed by using a recursive formulation. To do so, we define intermediate variables $- g_i$, s_i, and e_i for comparison of single bit i and g_{ij}, s_{ij} and e_{ij} for comparing bits i to j, of the inputs. The terms g_{ii}, s_{ii} and e_{ii} are identical to g_i, s_i and e_i, respectively.

$$g_i = a_i > b_i = a_i \overline{b_i}$$ \hspace{1cm} (3)

$$g_{ij} = a_{ij} > b_{ij}$$ \hspace{1cm} (4)

$$s_i = a_i \leq b_i = \overline{a_i} + b_i = \overline{g_i}$$ \hspace{1cm} (5)

$$g_{ij} = a_{ij} \leq b_{ij} = \overline{g_{ij}}$$ \hspace{1cm} (6)

$$e_i = a_i \geq b_i = a_i + \overline{b_i}$$ \hspace{1cm} (7)

$$e_{ij} = a_{ij} \geq b_{ij}$$ \hspace{1cm} (8)

Let us partition the 2-bit input signal strings A and B into two equal substrings. Say, $A = [a_0 | a_1]$ and $B = [b_0 | b_1]$. We can say that $A \geq B$ if $a_1 > b_1$ or if $a_1 = b_1$ and $a_0 \geq b_0$. Formally, the comparator function V_2 can be therefore defined using the variables g and e, as shown in (9).

$$V_2 = g_1 + e_1 \cdot e_0$$ \hspace{1cm} (9)

This recursive formulation can be generalized for comparing inputs with larger number of bits, as presented in

III. IDENTITY COMPARATOR

An identity comparator compares the value of the inputs and generates a HIGH output only when both the inputs are identical, otherwise the output is LOW. An identity comparator for 4-bit values can be represented by the following equation:

$$c_4 = (a_0 \leftrightarrow b_0) \cdot (a_1 \leftrightarrow b_1) \cdot (a_2 \leftrightarrow b_2) \cdot (a_3 \leftrightarrow b_3) = a \leftrightarrow b = a \cdot b + \overline{a + b}$$ \hspace{1cm} (1)

where a_i and b_i represent the i^{th} bits of input data signals a and b respectively. \overline{a} represents the negated value of Boolean variable a. Operators \cdot, $+$ and \leftrightarrow represent Boolean AND, OR and XNOR operations respectively. The XNOR operation can be expressed in terms of AND and OR operations as shown in (2).

$$a \leftrightarrow b = a \cdot b + \overline{a + b}$$ \hspace{1cm} (2)

A. Identity comparator steps

Without loss of generality, we demonstrate the implementation of identity comparator using ReRAM arrays, for 4-bit inputs, as shown in Table I.

Step 1: All the 181R arrays are initialized to a known state 0 by applying ‘0’ to the wordlines and ‘1’ to the bitlines.

Step 2: The data a_i is loaded into each of the array X_i by applying a_i to the wordlines and ‘0’ to the bitlines. Another copy of input A is loaded to the array Y.

Step 3: In this step, $m_i = a_i \oplus b_i$ is computed in the arrays X_i.

TABLE I: Steps of 4-bit identity comparator

<table>
<thead>
<tr>
<th>S#</th>
<th>X_0</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>a_0</td>
<td>0</td>
<td>a_1</td>
<td>0</td>
<td>a_2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>b_0</td>
<td>a_0</td>
<td>b_1</td>
<td>a_1</td>
<td>b_2</td>
<td>a_2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>m_0</td>
<td>0</td>
<td>m_1</td>
<td>m_2</td>
<td>m_3</td>
</tr>
<tr>
<td>5</td>
<td>x_1</td>
<td>x_0</td>
<td>1</td>
<td>x_1</td>
<td>x_3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>x_{23}</td>
<td>1</td>
<td>x_1</td>
<td>x_3</td>
<td>0</td>
<td>x_{23}</td>
</tr>
</tbody>
</table>

Res

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2: Logic operation using ReRAM devices

Table I: Steps of 4-bit identity comparator
(10) and (11). The comparator function \(V_n \) is identical to the value of \(e_{n-1.0} \).

\[
\begin{align*}
g_{ij} &= a_{ij} > b_{ij} = g_{i,\lceil \frac{i+j}{2} \rceil} + e_{i,\lceil \frac{i+j}{2} \rceil} \cdot g_{\lceil \frac{i+j}{2} \rceil, j} \\
e_{ij} &= a_{ij} \geq b_{ij} = g_{i,\lceil \frac{i+j}{2} \rceil} + e_{i,\lceil \frac{i+j}{2} \rceil} \cdot e_{\lceil \frac{i+j}{2} \rceil, j}
\end{align*}
\]

(10)

For computing \(V_2 \) and other intermediate variables for two bits \((g_{32}, e_{32}, \text{etc.})\) on 1S1R arrays, we propose an optimization to compute \(V_2 \) in a single cycle. Given \(g_1 = 1 \), it implies that \(e_1 = 1 \), thereby \(g_i, e_i \) and \(V_2 \) can be re-written as

\[
\begin{align*}
g_i &= g_i \cdot e_i \\
e_i &= g_i + e_i \\
V_2 &= g_1 \cdot e_1 + (g_1 + e_1) \cdot e_0 \\
&= g_1 \cdot e_1 + g_1 \cdot e_1 + g_1 \cdot e_0 \\
&= M_3(g_1, e_1, e_0)
\end{align*}
\]

(12) and (13)

Since 1S1R arrays are capable of computing \(M_3(S, \text{wl}, \text{bl}) \) natively and \(g_1 = \pi_1 \), we can express \(V_2 \) as shown in (15), which allows \(V_2 \) to be computed in a single clock cycle.

\[
V_2 = M_3(e_1, e_0, \pi_1)
\]

(15)

Without loss of generality, we demonstrate the implementation of comparator function using this formulation for 4-bit numbers using ReRAM arrays. We can compute the \(V_4 \), i.e. \(g_{30} \) by using the recursive formulation, (10) and (11), and the corresponding computation tree expressed in terms of \(M_3 \) is shown in Fig. 3. The steps involved in computation of 4-bit magnitude comparator using 1S1R arrays are stated below.

Step 1. In this step, the array \(G_2 \) is initialized to 0 and the rest of the arrays are initialized to 1.

Step 2. The variables \(s_3, c_3, g_2, e_2, s_1, e_1 \) and \(e_0 \) are computed in the arrays \(S_3, E_3, G_2, E_2, S_1, E_1 \) and \(E_0 \) respectively.

Step 3. \(g_{32} \) and \(e_{32} \) is computed in array \(G_2 \) and \(E_2 \) by reading out arrays \(S_3 \) and \(E_3 \) to apply appropriate input at the wordlines and bitlines. Similarly, array \(S_1 \) and \(E_1 \) are read out for computation of \(e_{10} \) in array \(E_0 \).

Step 4. In this step, \(e_{32}, e_{10} \) is computed in array \(E_2 \) by reading out the required value \(e_{10} \) from array \(E_0 \) and applying it to the wordline and ‘1’ to the bitline.

Step 5. Finally \(V_4 = g_{32} + e_{32}, e_{10} \) is computed in array \(G_2 \) by reading out the required value \(e_{32}, e_{10} \) from array \(E_2 \) and applying it to the wordline and ‘0’ to the bitline.

![Fig. 3: 4-bit magnitude comparator computation tree](image)

<table>
<thead>
<tr>
<th>Step</th>
<th>Array</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(G_2)</td>
<td>(0)</td>
</tr>
<tr>
<td>2.</td>
<td>(S_3, E_3, G_2, E_2, S_1, E_1)</td>
<td>(1)</td>
</tr>
<tr>
<td>3.</td>
<td>(g_{32}, e_{32})</td>
<td>(0)</td>
</tr>
<tr>
<td>4.</td>
<td>(E_0)</td>
<td>(1)</td>
</tr>
<tr>
<td>5.</td>
<td>(G_2)</td>
<td>(0), (1)</td>
</tr>
</tbody>
</table>

TABLE II: Steps of 4-bit magnitude comparator (\(A \geq B \))

A. Analysis of the proposed scheme

The proposed scheme solves the problem in \(\log_2(n) \) levels, where each level requires 2 cycle (one cycle for computing \(e_i, e_j \) and one step for ORing \(g_i \) with the term \(e_i, e_j \)), except the lowest level with intermediate variables for 2 bits, which can be computed in one cycle by using the proposed optimization. One cycle is required for initializing the arrays and one more cycle for computing intermediate variables for one bit. Thus, the proposed scheme requires \(2\log_2(n) + 1 \) cycles for computation of \(n \)-bit magnitude comparator.

The number of devices required is \(2n - 1 \), since for each bit position \(i \), \(0 \leq i < n \), variable \(g_i \) or \(s_i \) and \(e_i \) has to be computed and stored in step 2 of computation, except variable \(g_0 \) which the scheme does not require.

V. SIMULATION

In this section, the results of circuit simulation of the algorithms, are presented. The pulse width is chosen to be 50 ns and the voltage amplitude is 2.4 V. Since parallel reads of multiple devices are assumed, additional wordline amplifiers have been used to support the algorithm. In Fig. 4, the simulation waveforms of the identity comparator is depicted, with input variables \(a = (0101)_2 \) and \(b = (0101)_2 \). The final result is read out in the last step of array \(X_0 \) and corresponds to 1 state. This means that the input variables are identical, which is the expected result. In Fig. 5, the simulation of the magnitude comparator is presented, for the input variables \(a = (1000)_2 \) and \(b = (0011)_2 \). The result is read out in the last step from Array \(G_2 \) and corresponds to the 1 state, which implies that \(a \geq b \), showing the correctness of the scheme for this input data. For the specified input signals, the power consumption of the identity and magnitude comparator is 97.2 pJ and 74.2 pJ respectively. Both schemes were checked for correctness, by exhaustively testing with all possible input combinations of 4-bit data.

VI. CONCLUSION

In this work, we have proposed in-memory schemes with \(O(\log_2(n)) \) delay for identity comparator and magnitude comparator using 1S1R arrays. Our proposal has been verified with circuit simulation of the identity and magnitude comparator for 4-bit data signals and presented estimates of delay and area, in terms of number of devices.
Fig. 4: Simulation waveform for Identity Comparator
[The orange color waveforms represent the voltage applied to input lines. The green color waveforms are the information read out from the arrays]

Fig. 5: Simulation waveform for Value Comparator

REFERENCES

