
Tarek El-Ghazawi, GWU
1

Introduction to Unified
Parallel C: A PGAS C

Tarek El-Ghazawi

Tarek El-Ghazawi, GWU
2

1) UPC in a nutshell
 Memory model
 Execution model
 UPC Systems

2) Data Distribution and Pointers
 Shared vs Private Data
 Examples of data distribution
 UPC pointers

3) Workload Sharing
 upc_forall

4) Advanced topics in UPC
 Dynamic Memory Allocation

 Synchronization in UPC

 UPC Libraries

5) UPC Productivity
 Code efficiency

UPC Overview

Tarek El-Ghazawi, GWU
3

Introduction

 UPC – Unified Parallel C

 Set of specs for a parallel C

v1.0 completed February of 2001

v1.1.1 in October of 2003

v1.2 in May of 2005

v1.3 in November of 2013

 Compiler implementations by vendors and universities

 Consortium of government, academia, and HPC vendors
including IDA CCS, GWU, UCB, MTU, U of Florida,
UMCP, ANL, LBNL, LLNL, DoD, DoE, HP, Cray, IBM,
UMN, ARSC, Sun, Intrepid, Etnus, …

• http://upc.lbl.gov/publications/upc-spec-1.3.pdf

Tarek El-Ghazawi, GWU
4

Introduction cont.

UPC compilers are now available for most HPC
platforms and clusters
Some are open source

A debugger and a performance analysis tool are
available

Benchmarks, programming examples, and
compiler testing suite(s) are available

Visit www.upcworld.org or upc.gwu.edu for more
information

Tarek El-Ghazawi, GWU
5

UPC Systems

UPC Compilers
Cray
Hewlett-Packard
Berkeley
Intrepid
IBM
MTU

UPC Tools
Totalview
PPW from UF
TAU

Tarek El-Ghazawi, GWU
6

UPC Home Page
http://upc.gwu.edu

Tarek El-Ghazawi, GWU
7

UPC textbook now available

 UPC: Distributed Shared
Memory Programming
Tarek El-Ghazawi

William Carlson

Thomas Sterling

Katherine Yelick

Wiley, May, 2005

 ISBN: 0-471-22048-5

Tarek El-Ghazawi, GWU
8

Unified Parallel C

An explicit parallel extension of ISO C

PGAS parallel programming language

What is UPC?

Tarek El-Ghazawi, GWU
9

A number of threads working independently in a
SPMD fashion
MYTHREAD specifies thread index (0..THREADS-1)

Number of threads specified at compile-time or run-
time

Synchronization when needed

Barriers

Locks

Memory consistency control

UPC Execution Model

Tarek El-Ghazawi, GWU
10

 A pointer-to-shared can reference all locations in the
shared space, but there is data-thread affinity

 A private pointer may reference addresses in its private
space or its local portion of the shared space

 Static and dynamic memory allocations are supported
for both shared and private memory

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

o
n

ed

G
lo

b
al

ad

d
re

ss
 s

p
ac

e
Thread 1

P
ri

va
te

S

p
ac

es
UPC Memory Model

Tarek El-Ghazawi, GWU
11

User’s General View

A collection of threads operating in a single
global address space, which is logically
partitioned among threads. Each thread has
affinity with a portion of the shared address
space. Each thread has also a private space.

Tarek El-Ghazawi, GWU
12

1) UPC in a nutshell
 Memory model
 Execution model
 UPC Systems

2) Data Distribution and Pointers
 Shared vs Private Data
 Examples of data distribution
 UPC pointers

3) Workload Sharing
 upc_forall

4) Advanced topics in UPC
 Dynamic Memory Allocation

 Synchronization in UPC

 UPC Libraries

5) UPC Productivity
 Code efficiency

UPC Overview

Tarek El-Ghazawi, GWU
13

A First Example: Vector addition

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=0; i<N; i++)

if (MYTHREAD==i%THREADS)
v1plusv2[i]=v1[i]+v2[i];

}

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

Tarek El-Ghazawi, GWU
14

2nd Example: A More Efficient
Implementation

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=MYTHREAD; i<N; i+=THREADS)

v1plusv2[i]=v1[i]+v2[i];
}

Tarek El-Ghazawi, GWU
15

3rd Example: A More Convenient
Implementation with upc_forall

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()

{
int i;
upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];
}

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

Tarek El-Ghazawi, GWU
16

Example: UPC Matrix-Vector
Multiplication- Default Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared int a[THREADS][THREADS] ;
shared int b[THREADS], c[THREADS] ;
void main (void)
{

int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i){

c[i] = 0;
for (j= 0 ; j  THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

Tarek El-Ghazawi, GWU
17

Data Distribution

Th. 0

Th. 1

Th. 2

*

A B
T

hread 0

T
hread 1

T
hread 2

=

C

Th. 0

Th. 1

Th. 2

Tarek El-Ghazawi, GWU
18

A Better Data Distribution

C

Th. 0

Th. 1

Th. 2

*=

A B

Thread 0

Thread 1

Thread 2

Th. 0

Th. 1

Th. 2

Tarek El-Ghazawi, GWU
19

Example: UPC Matrix-Vector
Multiplication- The Better Distribution
// vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)
{

int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i){

c[i] = 0;
for (j= 0 ; j THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

