
Tarek El-Ghazawi, GWU
1

Introduction to Unified
Parallel C: A PGAS C

Tarek El-Ghazawi

Tarek El-Ghazawi, GWU
2

1) UPC in a nutshell
 Memory model
 Execution model
 UPC Systems

2) Data Distribution and Pointers
 Shared vs Private Data
 Examples of data distribution
 UPC pointers

3) Workload Sharing
 upc_forall

4) Advanced topics in UPC
 Dynamic Memory Allocation

 Synchronization in UPC

 UPC Libraries

5) UPC Productivity
 Code efficiency

UPC Overview

Tarek El-Ghazawi, GWU
3

Introduction

 UPC – Unified Parallel C

 Set of specs for a parallel C

v1.0 completed February of 2001

v1.1.1 in October of 2003

v1.2 in May of 2005

v1.3 in November of 2013

 Compiler implementations by vendors and universities

 Consortium of government, academia, and HPC vendors
including IDA CCS, GWU, UCB, MTU, U of Florida,
UMCP, ANL, LBNL, LLNL, DoD, DoE, HP, Cray, IBM,
UMN, ARSC, Sun, Intrepid, Etnus, …

• http://upc.lbl.gov/publications/upc-spec-1.3.pdf

Tarek El-Ghazawi, GWU
4

Introduction cont.

UPC compilers are now available for most HPC
platforms and clusters
Some are open source

A debugger and a performance analysis tool are
available

Benchmarks, programming examples, and
compiler testing suite(s) are available

Visit www.upcworld.org or upc.gwu.edu for more
information

Tarek El-Ghazawi, GWU
5

UPC Systems

UPC Compilers
Cray
Hewlett-Packard
Berkeley
Intrepid
IBM
MTU

UPC Tools
Totalview
PPW from UF
TAU

Tarek El-Ghazawi, GWU
6

UPC Home Page
http://upc.gwu.edu

Tarek El-Ghazawi, GWU
7

UPC textbook now available

 UPC: Distributed Shared
Memory Programming
Tarek El-Ghazawi

William Carlson

Thomas Sterling

Katherine Yelick

Wiley, May, 2005

 ISBN: 0-471-22048-5

Tarek El-Ghazawi, GWU
8

Unified Parallel C

An explicit parallel extension of ISO C

PGAS parallel programming language

What is UPC?

Tarek El-Ghazawi, GWU
9

A number of threads working independently in a
SPMD fashion
MYTHREAD specifies thread index (0..THREADS-1)

Number of threads specified at compile-time or run-
time

Synchronization when needed

Barriers

Locks

Memory consistency control

UPC Execution Model

Tarek El-Ghazawi, GWU
10

 A pointer-to-shared can reference all locations in the
shared space, but there is data-thread affinity

 A private pointer may reference addresses in its private
space or its local portion of the shared space

 Static and dynamic memory allocations are supported
for both shared and private memory

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1

P
ar

ti
ti

o
n

ed

G
lo

b
al

ad

d
re

ss
 s

p
ac

e
Thread 1

P
ri

va
te

S

p
ac

es
UPC Memory Model

Tarek El-Ghazawi, GWU
11

User’s General View

A collection of threads operating in a single
global address space, which is logically
partitioned among threads. Each thread has
affinity with a portion of the shared address
space. Each thread has also a private space.

Tarek El-Ghazawi, GWU
12

1) UPC in a nutshell
 Memory model
 Execution model
 UPC Systems

2) Data Distribution and Pointers
 Shared vs Private Data
 Examples of data distribution
 UPC pointers

3) Workload Sharing
 upc_forall

4) Advanced topics in UPC
 Dynamic Memory Allocation

 Synchronization in UPC

 UPC Libraries

5) UPC Productivity
 Code efficiency

UPC Overview

Tarek El-Ghazawi, GWU
13

A First Example: Vector addition

//vect_add.c
#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=0; i<N; i++)

if (MYTHREAD==i%THREADS)
v1plusv2[i]=v1[i]+v2[i];

}

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

Tarek El-Ghazawi, GWU
14

2nd Example: A More Efficient
Implementation

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];
void main() {

int i;
for(i=MYTHREAD; i<N; i+=THREADS)

v1plusv2[i]=v1[i]+v2[i];
}

Tarek El-Ghazawi, GWU
15

3rd Example: A More Convenient
Implementation with upc_forall

//vect_add.c

#include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], v1plusv2[N];

void main()

{
int i;
upc_forall(i=0; i<N; i++; i)

v1plusv2[i]=v1[i]+v2[i];
}

Thread 0 Thread 1

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

0 1
2 3

Iteration #:

…

…

…

S
h

a
re

d
 S

pa
ce

Tarek El-Ghazawi, GWU
16

Example: UPC Matrix-Vector
Multiplication- Default Distribution

// vect_mat_mult.c
#include <upc_relaxed.h>

shared int a[THREADS][THREADS] ;
shared int b[THREADS], c[THREADS] ;
void main (void)
{

int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i){

c[i] = 0;
for (j= 0 ; j THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

Tarek El-Ghazawi, GWU
17

Data Distribution

Th. 0

Th. 1

Th. 2

*

A B
T

hread 0

T
hread 1

T
hread 2

=

C

Th. 0

Th. 1

Th. 2

Tarek El-Ghazawi, GWU
18

A Better Data Distribution

C

Th. 0

Th. 1

Th. 2

*=

A B

Thread 0

Thread 1

Thread 2

Th. 0

Th. 1

Th. 2

Tarek El-Ghazawi, GWU
19

Example: UPC Matrix-Vector
Multiplication- The Better Distribution
// vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];
shared int b[THREADS], c[THREADS];

void main (void)
{

int i, j;
upc_forall(i = 0 ; i < THREADS ; i++; i){

c[i] = 0;
for (j= 0 ; j THREADS ; j++)

c[i] += a[i][j]*b[j];
}

}

