Date-Driven Topology Identification in Power Distribution Systems with Machine Learning

by Yifu Li

Bachelor of Engineering in Electrical Engineering and Its Automation, June 2016, Changzhou University

A Thesis submitted to

The Faculty of
The School of Engineering and Applied Science
of The George Washington University
in partial satisfaction of the requirements for the degree of Master of Science

August 31, 2020

Thesis directed by

Payman Dehghanian
Assistant Professor of Electrical and Computer Engineering
© Copyright 2020 by Yifu Li
All rights reserved
Dedication

This is dedicated to my parents, Weimin Pan and Jun Li, who give birth to me, love me, believe in me, inspire me and have supported me in every step of my life. Without their words, I could never have walked this far...

Also, I'd like to dedicate this thesis to all my relatives and friends. Thank you for all your support and help during this tough period.
Acknowledgments

First of all, I wish to thank Dr. Payman Dehghanian, my academic advisor, for introducing me to the fantastic world of electrical power systems engineering, continually guiding me and giving me confidence and knowledge on this road.

I sincerely thank all of the other wonderful members of the GW SmartGrid Lab for their consistent help during my two-year master’s degree period. Specifically, my thanks go to Shiyuan Wang who illuminated the darkness of the current study with his special intelligence, and Li Li who patiently used his expertise to help me within the neural networks field.

Finally, my greatest appreciation to all of my friends, especially Jinshun Su, Dingwei Wang and Fei Teng. When time gets tough, I know that we have each other.
Abstract

Date-Driven Topology Identification in Power Distribution Systems with Machine Learning

With the increase in demand for quality electricity and the number of end-use consumers, the operation and control of power grids have become more and more complex and challenging. Ensuring acceptable reliability and quality of the electricity supply has become particularly important to every aspect of our electrified economy. Due to the growing deployment of Micro-Phasor Measurement Units (μPMUs) in power distribution grids, an abundance of high-resolution measurements is available that can be harnessed for smarter operation and fault analyses in power distribution networks. Traditional models have revealed limitations on the network topology identification which may occupy manpower and material resources with no guaranty to effectively restore power in a short time period when facing faults and other disruptions. This thesis suggests and implements a machine learning framework that uses the μPMU measurements as inputs and provides a full observation of the network topology in real-time. Specifically, the proposed framework employs a Convolutional Neural Network (CNN) to identify the physical state of the power network at all times. The framework was evaluated on the IEEE 34-Node Test Feeder, where the experiments show that the proposed CNN can achieve a promising performance with high accuracy even when the μPMU measurements contain noises and/or missing entries.
Table of Contents

Dedication iii

Acknowledgments iv

Abstract v

List of Figures viii

List of Tables ix

List of Abbreviations x

Chapter 1: Introduction 1
 1.1 Background ... 1
 1.2 Smart Grid Resilience 2
 1.3 Challenges and Opportunities 5
 1.4 PMU Operating Principle 6
 1.5 Convolutional Neural Network 8
 1.6 Thesis Outline ... 11

Chapter 2: Literature Review 12
 2.1 Introduction .. 12
 2.2 State-of-the-Art Research 15
 2.3 Proposed Framework 18

Chapter 3: Simulation on MATLAB 20
 3.1 Background ... 20
 3.2 Scenario Generation 20
 3.3 Simulink ... 28
 3.3.1 Environment Block 30
 3.3.2 Power Source Block 30
 3.3.3 µPMU Block 32
 3.3.4 Distribution Line Block 33
 3.3.5 Spot Load Block 35
 3.3.6 Distributed Load Block 37
 3.3.7 Subsystem Block 38

Chapter 4: Machine Learning with Python 39
 4.1 Introduction .. 39
 4.2 The Proposed Framework 40
 4.3 Programming in Pycharm 42

Chapter 5: Numerical Case Study 43
5.1 Experiments Outline .. 43
5.2 Data Generation and Preprocessing 44
 5.2.1 Parallel Simulation .. 44
 5.2.2 Data Classification .. 45
5.3 Results Analysis ... 45
 5.3.1 Full Network Observation 45
 5.3.2 Missing \(\mu\)PMUs Observation 48

Chapter 6: Conclusion 55

6.1 Summary of Current Work 55
6.2 Future Research .. 56

Bibliography 57

Appendix A: IEEE 34 Node Test Feeder 74

A.1 Introduction ... 74
A.2 System Data ... 75
A.3 Impedances .. 79
A.4 Power Flow Results ... 80
 A.4.1 Radial Flow Summary 80
 A.4.2 Voltage Profile .. 81
 A.4.3 Voltage Regulator Data 82
 A.4.4 Radial Power Flow .. 83

Appendix B: PMU Data Generating Code 92

B.1 Generate scenarios .. 92
B.2 Generate PMU Data ... 98

Appendix C: Convolutional Neural Network Code 108

C.1 Sorting Data .. 108
C.2 Calculate the mean and standard deviation 110
C.3 Two Layer Net .. 111
C.4 Pandas Dataset Folder .. 113
C.5 Main Code ... 113
 C.5.1 Cuda Parameters .. 113
 C.5.2 Load Data .. 114
 C.5.3 Train Function .. 115
 C.5.4 Model and Parameter Setting 116
 C.5.5 Training Loop ... 116
 C.5.6 Training Loop ... 117
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Power System Operating States</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Evolution of Artificial Intelligence</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Convolutional Neural Network Architecture</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Two-dimension Deep Learning Framework based on Recommender System</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>A Two-Convolution-Layer CNN Structure</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The proposed framework for power system online topology identification</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>IEEE 34-Node Test Feeder with Colored Phasing</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>IEEE 34-Node Test Feeder Scenarios</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Three-Phase Series RLC Load Block Parameter Panel</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>All Studied Network Topologies</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of a μPMU Data</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>The structure of 34-Node Test Feeder in Simulink</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>PSB option menu block</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>The Three-Phase Source block</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>The μPMU Block in Simulink</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>Distributed Parameter Line Block in Simulink</td>
<td>34</td>
</tr>
<tr>
<td>3.11</td>
<td>Spot Load Block in Simulink</td>
<td>36</td>
</tr>
<tr>
<td>3.12</td>
<td>Distributed Load Block in Simulink</td>
<td>37</td>
</tr>
<tr>
<td>3.13</td>
<td>Results Subsystem Block in Simulink</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Proposed CNN Working Flowchart</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>A Heatmap Example of the Generated μPMU Measurement Data Sample</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>The topology observation with 22 μPMU sensors</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>The topology observation with 12 μPMU sensors</td>
<td>52</td>
</tr>
<tr>
<td>A.1</td>
<td>IEEE 34-Node Test Feeder</td>
<td>74</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Full observation μPMU Components</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Network Model Specifications and Variables</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Generated Network Topology Scenarios</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Network Topology Realizations with the Corresponding Number of Generated Scenarios</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Convert Factors</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>The identification accuracy of the interfered dataset under full observation</td>
<td>46</td>
</tr>
<tr>
<td>5.2</td>
<td>The identification accuracy (%) by training and testing the CNN in different extents of interferences</td>
<td>48</td>
</tr>
<tr>
<td>5.3</td>
<td>The identification accuracy of the interfered dataset under missing several μPMUs observations</td>
<td>49</td>
</tr>
<tr>
<td>5.4</td>
<td>22 μPMU Components</td>
<td>51</td>
</tr>
<tr>
<td>5.5</td>
<td>The identification accuracy of the interfered dataset under the two-third μPMUs observation</td>
<td>51</td>
</tr>
<tr>
<td>5.6</td>
<td>12 μPMU Components</td>
<td>52</td>
</tr>
<tr>
<td>5.7</td>
<td>Different numbers of μPMU Observation</td>
<td>53</td>
</tr>
<tr>
<td>A.1</td>
<td>Overhead Line Configurations [6]</td>
<td>75</td>
</tr>
<tr>
<td>A.2</td>
<td>Line Segment Data [6]</td>
<td>76</td>
</tr>
<tr>
<td>A.3</td>
<td>Transformer Data [6]</td>
<td>76</td>
</tr>
<tr>
<td>A.4</td>
<td>Spot Loads [6]</td>
<td>77</td>
</tr>
<tr>
<td>A.5</td>
<td>Distributed Loads [6]</td>
<td>77</td>
</tr>
<tr>
<td>A.7</td>
<td>Regulator Data [6]</td>
<td>78</td>
</tr>
</tbody>
</table>
List of Abbreviations

µPMU Micro-Phasor Measurement Unit 2, 8, 11, 16, 18, 22–25, 28, 32, 33, 38–40, 42–45, 47–51, 53–55

AC Alternating current 7

AE Autoencoder 13, 56

AI Artificial Intelligence 8, 12

ANN Artificial Neural Network 8

CapsNet Capsule Neural Network 56

CNN Convolutional Neural Network 8, 11, 13–15, 18, 22, 25, 40–43, 45–48, 55, 56

Conv Convolutional 15, 18

CPU Central Processing Unit 45

DER Distributed Energy Resources 12, 15, 18

DL Deep Learning 8, 14

DSSM Deep Structured Semantic Model 13

FACTS Flexible Alternating Current Transmission System 3

FC Fully connected 11, 14, 18

FTU Feeder Terminal Unit 1, 2

GAN Generative Adversarial Network 14

GPS Global Positioning System 7, 12

MATLAB Matrix Laboratory 11, 20, 23, 25, 28, 40, 44

ML Machine Learning 8

MLP Multilayer Perceptron 13

NADE Neural Autoregressive Distribution Estimation 14

PMU Phasor Measurement Unit 1, 6, 8, 11, 12, 16, 17, 56
RBM Restricted Boltzmann Machine \[13\]
ReLU Rectified Linear Unit \[10\,18\,42\]
RNN Recurrent Neural Network \[13\]
RTU Remote Terminal Unit \[1\,2\]
SIANN Shift Invariant or Space Invariant Artificial Neural Network \[9\]
SNR Signal-to-Noise Ratio \[46\,48\]
SVM Support Vector Machine \[56\]
SW Switch or breaker \[23\,53\]
TTU Transformer Terminal Unit \[1\,2\]
Chapter 1: Introduction

1.1 Background

With the development of modern electrical systems for half a century, there are more and more opportunities to enhance the safety, economics, reliability, sensitivity, and flexibility of the power system. For a long time, the complicated and challenging electrical structure of the power distribution grid, insufficient measurement configuration and utilization, information and measurement sparsity, and other problems have spread throughout the network layout, where an improvement in the monitoring and controllability may affect the reliability of the power supply, power quality, and the economics of the system operation. In order to generate and dispatch the electrical power efficiently and operate the power grid stably and safely, system operators need to be informed of the electrical network topology and demand profiles across the network at all times. The observability and controllability of the electrical network are essential to ensure its safe and economic operation. The existing distribution network Feeder Terminal Unit (FTU), distribution Transformer Supervisory Terminal Unit (TTU), Remote Terminal Unit (RTU) and some other measuring equipment do not provide synchronized measurements; and the uploaded measurements are minutely, which makes it difficult to meet the intelligent fast-speed operation and control of the power distribution systems [7-12]. Hence, with the growing complexity in the power grid structure reinforced with heterogeneous resources and the increasing demand for electricity needed for an electrified economy, Phasor Measurement Units (PMUs) have been introduced and widely deployed to observe the dynamic performance of the power grid with
synchronized measurements \cite{13, 23}. Accordingly, an abundance of high-resolution data is now becoming available for further analysis and informed decision making.

As synchrophasor data becomes more available, there is an increasing need to be able to effectively process and analyze the data to ultimately improve the ways power systems are operated. In power distribution systems, Micro-PMUs (or \(\mu\)PMUs) are used \cite{24}. Combined with the topological processing of the visual images, based on the measurements provided by \(\mu\)PMU, one can better handle the abnormal conditions in the grid (i.e., fault location, fault detection, etc.), thereby reducing the enormous economic consequences and improving the power grid resilience. Compared to the traditional event detection schemes and infrastructure such as FTU, TTU, and RTU, Micro-PMUs (\(\mu\)PMUs) in power distribution grids offer yet-untapped potential for online situational awareness, i.e., event detection, classification, and high-fidelity high-resolution measurements.

1.2 Smart Grid Resilience

Smart grids, where cyber-infrastructure is used to make power distribution more dependable and efficient, are prime examples of modern infrastructure systems. The cyber-infrastructure provides monitoring and decision support intended to increase the dependability and efficiency of the system. However, this comes at the cost of vulnerability to accidental failures and malicious attacks, due to the greater extent of virtual and physical interconnection. Any failure can propagate more quickly and extensively, and as such, the net result could be a compromised reliability and security \cite{25, 26}.

Reliability and *Resilience* are two different concepts in power grids.
The overall reliability of a cyber-physical power grid is a function of the respective reliability of its elements, including both physical components, e.g., generators and transmission lines, and cyber components, e.g., control software, communication links, FACTS devices, and sensors. Reliability quantifies the likelihood of a system to function (or fail) as specified, under given conditions, over a given duration [27]. It takes a binary view of a system, were the only states possible are “functional” and “failed.” It also includes the maintainability of the systems and its constituent components over time [28–49]. As such, this metric is of limited use in evaluating the system after a failure occurs [50,51].

A quantitative metric and concept useful to this end is “Resilience”, defined as the ability of a system to bounce back from a failure [52]. Recovery does not imply the perfect restoration of the system’s functionality; but instead implies that the system has returned to a state where it is considered functional [25]. Reference Figure 1.1 shows different operating states a power system may experience [53–55].

- **Normal State**: In this state, the system parameters such as voltage, frequency, current, etc. are within the normal and desired range of operation and the energy supply meets the demand. Event a component fails, the system will be able to meet the demand with all operational variables within the desirable thresholds.

- **Alert State**: In this state, all system parameters are within the acceptable range but very close to their limits. In case of a failure in one system element, the generation and demand will be still in balance; however, some operational variables may be violated.

- **Emergency State**: In this state, some system parameters are outside
their acceptable range. This may lead to system disintegration if a failure occurs in the system.

- **Extremis State**: In this state, partial or system-wide black-out may occur. That is the generation and demand are not in balance.

- **Restorative State**: In this state, the system goes into a process of restoration by reconnecting system elements and re-synchronizing generators to achieve the normal operating state.

Over the past couple of years, the GW Laboratory researchers have studied the resilience challenges that the power grid faces to a wide range of threats and have proposed solutions for detection, verification, and mitigation in response. Interested readers can refer to [26, 56–76].
1.3 Challenges and Opportunities

Data analytics can improve resiliency in the dynamic grid [77]. Different from the traditional power grids, modern grids are facing a high penetration of distributed renewables more than ever before and a lot of research has been devoted to capture the uncertainties in the power grid (both transmission and distribution) to harness their full potential in the operation and control paradigms [54,55,78–83]. Meanwhile, as the number of consumers connected to the grid increases, the loads become more active and controllable, and the storage devices also need to keep the pace with such evolution. Additionally, new technologies like energy storage resources and electric vehicles have been proliferated in recent years in power grids, making it a heterogeneous ecosystem of physical and cyber infrastructures [72,84–92].

Access to high-fidelity measurements in power distribution systems is particularly critical, and at the same time challenging due to the following reasons [93]:

(i) The length of the power distribution lines is usually between 5 to 10 kilometers, resulting in the phase angle difference between the two ends of the line to be commonly small (sometimes even lower than 0.1°).

(ii) The proliferation and rushing arrival of renewables have increased the complexity in the grid structure and the way electricity flows in the network. A three-phase unbalance architectures are commonly seen in power distribution systems, which could result in more than 30% inter-harmonics and under 60dB noise conditions.

(iii) The fast switching characteristics of power electronic devices lead to more electrical transients, further mandating the higher efficiency
and dynamic tracking capability of the event detectors in the power distribution sector.

While measurements can be shared over communication networks in real-time and collected at a centralized platform, called Phasor Data Concentrators (PDC) [94] for further processing, the underlying network models are mostly unavailable or incomplete. In most cases, data is hardly available in full (but limited) for research through the non-disclosure agreements (NDAs) [95]. This makes it challenging to get the most out of the synchronized measurements for fault detection and localization applications when the real-time network topology is unknown or not accurate. The problem of estimating the state of the power grid is usually divided into two interrelated phases: the first is the state estimation in which the estimated value is the voltage at all buses across the network, and the second is topology processing and topology error detection, in which the breaker status is used to track the current topology of the grid, and to detect and correct the errors in the calculated topology. These two stages iterate, and the combined process is known as a generalized state estimation [96]. With the measurements received from the μPMUs and when judiciously integrated with the topological processing of the visual images, the abnormal conditions in the distribution network (e.g., fault location, fault detection, etc.) can be better handled, further improving the network reliability, reducing the economic losses, and mitigating the electrical safety concerns.

1.4 PMU Operating Principle

A Phasor Measurement Unit (PMU) is a device used to measure the magnitude and phase angle of an electrical waveform, i.e., phasor quantity (such as voltage or current) in the electricity grid using a common time
source for synchronization [97]. Due to the fact that the time is synchronized
by the Global Positioning System (GPS), PMUs are able to capture real-time
electrical phasor quantities from multiple remote points on the power grid,
thereby providing a real-time snapshot of the entire grid making it possible
to approach wide-area monitoring, protection and control.

Additionally, PMUs are also used to measure the frequency in power grids.
A typical commercial PMU could report measurements with a high temporal
resolution in the order of 30-60 measurements per second. This helps
engineers in analyzing dynamic events in the grid which is not possible with
traditional SCADA measurements that generate one measurement every 2
or 4 seconds [98]. Hence, the synchronization ability makes PMU have a
critical role in protecting the electric systems from power outages, because
they could reduce the grid’s stress caused by imbalances in power supply
and demand.

A PMU could measure 50/60 Hz AC waveforms (voltages and currents)
typically at a rate of 48 samples per cycle making them effective at de-
tecting fluctuations in voltage or current at less than one cycle. Phasor
measurements from PMUs are constructed from cosine waves, that follow
the structure below [99]:

\[A \cos(\omega t + \theta) \]

(1.1)

Wherein, \(A \) is the scalar value, and usually stands for voltage or current
magnitude; \(\theta \) is the phase angle offset from some defined starting position;
\(\omega \) is the angular frequency of the waveform, that is most often described
as a constant of \(2\pi 50 \) Hz or \(2\pi 60 \) Hz. It is worth noting that when the
frequency does not oscillate around or near 50/60 Hz, PMUs are not able to
accurately reconstruct these waveforms, because the PMU is unable to fit
the waveform exactly when it is non-sinusoidal [99].
Historically, only small numbers of PMUs have been used to monitor transmission lines with acceptable errors of around 1%. While PMUs are generally used on transmission systems, new research is being done on the effectiveness of µPMUs for power distribution systems. That is because the PMU can not only be a dedicated stand-alone sensor, but also its functionality could be incorporated into a protective relay or other intelligent electronics devices [100]. µPMUs can help decrease the error in the phase angle measurements of the distribution line from ±1° to ±0.05°, giving a better representation of the true phase angle value [24].

1.5 Convolutional Neural Network

First of all, the differences among Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) need to be known. As Figure 1.2 shows below, Artificial Intelligence is a science field that aims at finding solutions to complex problems like humans do. A decision mechanism that is similar to a real human decision mechanism is tried to be modeled with some algorithms. Machine learning is a sub-domain of artificial intelligence. Machine learning uses mathematical and statistical ways to extract information from data, and with that information, ML tries to guess the unknown. Deep learning is a sub-domain of ML and tries to learn the data with the artificial neural network approach [101,102].

In machine learning, artificial neural networks (ANNs) are abstractions of biological neurons that can be trained to perform useful functions like human brain [103]. A Convolutional Neural Network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery since the 1980s [104]. They are also known as Shift Invariant or Space Invariant Artificial Neural Networks (SIANN), based on their shared-
weights architecture and translation invariance characteristics \cite{105,106}.

\textbf{CNNs} are regularized versions of multilayer perceptrons. CNNs are a derivative of standard neural networks which are made up of neurons with learnable weights and biases. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The "fully-connectedness" of these networks makes them prone to overfitting data. But instead of using fully connected hidden layers in the regular neural network, the CNN introduces a special network structure, which consists of convolution layers and pooling layers, to address the challenges in the computer vision \cite{107}.

CNNs take a different approach towards regularization: they take advantage of the hierarchical pattern in data and assemble more complex patterns using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity, CNNs are on the lower extremity \cite{108}. Each neuron receives several inputs, takes a weighted sum over them, passes it
through an activation function and responds with an output. Typical ways of regularization include adding some form of magnitude measurement of weights to the loss function. Figure 1.3 shows an architecture of CNN. *Convolution* has the nice property of being translational invariant. Intuitively, this means that each convolution filter represents a feature of interest (e.g. pixels in letters) and the CNN algorithm learns which features comprise the resulting reference (i.e. alphabet) [107].

![Convolutional Neural Network Architecture](image)

Figure 1.3: Convolutional Neural Network Architecture [3]

After convolution, the next step is to add an *activation* function. Usually, it could be **Rectified Linear Unit (ReLU)**. ReLU transform function only activates a node if the input is above a certain quantity; the input is below zero, the output is zero, but when the input rises above a certain threshold, it has a linear relationship with the dependent variable. And the *Pooling* Layer is to shrink the image stack into a smaller size. If the size of data is still huge, the convolution and pooling steps are repeated. Finally, the *Fully-Connected Layer* (FC) is to flatten all the shrunken layers and stack up
them into one, normally through the Softmax function \([107]\). At this point in time, the training part for neural network is done, and further steps are to predict and check the working of the classifier.

1.6 Thesis Outline

To overcome the limitations of the traditional mathematical models, this thesis proposes a machine learning framework for online identification of the distribution network topology. The neural network is trained using \(\mu\text{PMU}\) measurements across the network—voltage, current magnitudes, and their phase angles—and achieves the real-time network topology with high accuracy even under noise and missing entries in \(\text{PMU}\) measurements. The measured data are rearranged into 2-D matrices (heatmaps), where the suggested CNN \([69]\) takes them as the input. The performance of the proposed algorithm is tested and verified in a radial three-phase unbalanced distribution network.

The rest of the thesis is structured as follows: Chapter 2 provides a literature review on the topic and discusses the design of the proposed convolutional neural network framework. Chapter 3 implements the suggested approach on the IEEE 34-Node Test Feeder in MATLAB/Simulink platform and generates \(\mu\text{PMU}\) heatmaps under different system operating scenarios. Chapter 4 introduces the proposed CNN framework, and how it is implemented through Python. Section 5 presents the numerical studies and the network topology identification results in power distribution systems with noisy and missing measurements. Finally, the thesis is concluded in Chapter 6.
Chapter 2: Literature Review

2.1 Introduction

With the increasing growth of distributed energy resources in the power grid, more observability and controllability will be needed to accurately monitor the power flows and the unfolding conditions. In 1893, Charles Proteus Steinmetz presented a paper on simplified mathematical description of the waveforms of alternating current electricity. Steinmetz called his representation a phasor [109]. With the invention of PMU in 1988 by Dr. Arun G. Phadke and Dr. James S. Thorp at Virginia Tech, Steinmetz’s technique of phasor calculation evolved into the calculation of real-time phasor measurements that are synchronized to an absolute time reference provided by the Global Positioning System (GPS). People therefore refer to synchronized phasor measurements as synchrophasors. Early prototypes of the PMU were built at Virginia Tech, and Macrodyne built the first PMU (model 1690) in 1992 [110].

In order to enhance the power grid resilience, grid operators need reliable and continuous monitoring of distributed energy resources (DERs). The concept of distribution automation was proposed to be used as the business-to-people (B2P) intelligent control between the power generation and consumer terminals, and help automatically realizing a sustainable grid operation [111].

On the other hand, as Figure 1.2 shows in Chapter 1, deep learning is a subset of AI and machine learning that uses multi-layered artificial neural networks to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, language translation and others. Deep
learning differs from traditional machine learning techniques in that they can automatically learn representations from data such as images, video or text, without introducing hand-coded rules or human domain knowledge. Their highly flexible architectures can learn directly from raw data and can increase their predictive accuracy when provided with more data.

Figure 2.1 is a two-dimension scheme for classification of deep learning based on recommender system; the left part illustrates the first dimension, and the right part illustrates the second dimension [4].

![Figure 2.1: Two-dimension Deep Learning Framework based on Recommender System [4]](image)

It is obvious that in the first dimension, Multilayer Perceptron (MLP), Restricted Boltzmann Machines (RBM), Autoencoder (AE), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Deep Structured Semantic Model (DSSM), Neural Autoregressive Distribution Estimation

13
NADE, and Generative Adversarial Network (GAN) all belong to Deep Learning (DL) techniques.

Within the family of neural networks, and to train the model with a grid-like topology such as images, deep CNN has been one of the greatest breakthroughs [112,113]. As it shows in Figure 2.2, the CNN structure consists of a convolutional layer, a pooling layer, and fully connected layers (FCs). When applied to single-label (multi-class) image classification, CNN can handle well-aligned images very well [114].

By definition, CNNs are simply neural networks that use convolution in place of the FC layer in that least one of their layers [115]. In general, the implementation of the convolution is actually the cross-correlation assessment and defined by

\[s^p(m,n) = \sum_u \sum_v \sum_w f^u(m+v,n+w)K^p(v,w), \quad (2.1) \]
where $s^p(m,n)$ is the output of the convolutional layer at position (m,n) and p-th channel, I^u is the u-th channel of the data volume, and K^p is the p-th convolutional kernel. A nonlinear activation function is applied to the output of the convolution output, and the final activations of neurons in a convolutional layer are

$$I_l = \sigma(s),$$

where I_l represents the output volume of the l-th layer, and $\sigma(\cdot)$ represents the non-linearity of the neurons. By stacking the convolutional layers, the abstraction capacity of the network increases [116].

The representations (outputs) of the last convolutional (Conv) layer are expanded to vectors and processed by the general fully-connected layers, which transform the representations with more nonlinearities and into spaces with different (higher or lower) dimensions. The final layer of a CNN usually reduces the dimensionality of the representations to the number of the classes; cross-entropy [117] is then employed to measure the “goodness” of the classification (Kullback-Leibler divergence between the predicted distribution and the target distribution). Finally, gradients of the cross-entropy loss function with respect to the parameters in the CNN are used to train the CNN by back-propagation.

2.2 State-of-the-Art Research

The main challenge in DER monitoring at all times is that it is difficult to obtain the real-time grid topology. A variety of research methods have been proposed to identify the power system topology from synchrophasor measurements, and several methods of external network modeling were discussed to implement online security analyses [118]. Mathematically,
grid topology identification could be realized through voltage estimation across the grid [119], but the accuracy goes low when this method is applied on the topology of a frequency changing distribution grid or with limited \(\mu \text{PMU} \) sensors [120–123]. In [124], a Jacobian-based equivalent approach is used for detecting the electrical network topology changes in the external system. An approach which is a hybrid of power flow and state estimation is discussed in [125]. A method to capture the network topology changes based on an extended Ward equivalent is discussed in [126]. H. Singh, et al. There are also distribution network specific methods based on various assumption topologies, [127] introduced a technique that estimates the status of a suspect lines as part of the state estimation process. Focused on the transmission systems with inaccurate parameters, an offline REI (radial, equivalent, independent) equivalent [128] is suggested to be built from a base-case condition and to be updated using online data [129]. In order to improve the accuracy of the topology detection process, the problem of using telemetry data to correct and adjust the transmission parameters are considered in [130]. The network topology estimation accuracy could vary greatly depending on the information injections at the non-PMU buses. If the injections at the non-PMU buses are zero, the estimates will be the true equivalent at the PMU buses. In [131], a least-square “model-free” approach is proposed to estimate the equivalent power system topology by calculating the load variations with limited observation at each bus. In [132], a method for visualizing PMU data by reducing the system to an equivalent model at the PMU buses is discussed, which assumes the electrical network topology is known; an equivalent procedure is performed to reduce the network to a Ward type equivalent at the PMU buses. Another useful visualization technique has been done by biplots introduced in [133]. S. V. Wiel, et al. [96]
developed a greedy search algorithm to estimate the current topology of a power grid from phasor measurements. It studies the PMU placement at strategic points in a distribution system [134] to achieve a promising sensitivity to single-line outages. G. Cavraro, et al. [135] proposed a novel method for topology detection in distribution networks called the Time-Series Signature Verification for Topology Detection (TSV-Top). This approach relies on measurement time series from PMUs and performs the projection of actual voltage phasor patterns onto a library of signals associated with possible topology transitions of a given distribution network [136].

The above literature review revealed that most of the power grid topology identification and estimation tools are based on mathematical models, the majority of them assuming an electrical network topology first and then measure the collected data to compare the features and determine the accuracy of the previously assumed network topology. Such strategies are time-consuming, less accurate, and with practical limitations. On the contrary, there are more recent strategies leveraging machine learning advancements. Instead of accurately modeling the system, recent works have focused on training artificial neural networks to automatically recognize the electrical network topology and solve complex problems. In [137] and [138], two learning algorithms based on nodal voltage graphical models are introduced which can estimate the network topology under varying topological restrictions. D. Deka, et al. [139] developed a learning framework to reconstruct the radial operational structure of the distribution grid from synchronized voltage measurements across the network subject to the exogenous fluctuations in nodal power consumption. For the economic purposes, P. K. Ghosh, et al. [140] proposed a novel approach for complete system and fault observability using a minimum number of strategically-placed
PMUs. Reference [141] proposed a data-driven approach based on sensor measurements that identifies DERs' connectivity by converting topology identification problems to probability distance minimization problems via the Kullback-Leibler (KL) divergence metric.

2.3 Proposed Framework

In this thesis, the proposed CNN for the heatmap classification in the IEEE 34-Node Test Feeder has the following architecture: Input(33×12)–Conv(32, 5×3)–Conv(32, 3×3)–FC(100)–FC(9). Note that the axes of the input heatmap are with different units; Therefore, narrow kernel has been chosen in the first Conv layer which could cover the 3-phase data in each group, and the stride of the convolution operation in the first layer is (3, 2)—other Conv layers' strides are (1, 1). This design processes the data in each group first, then combines the information of each group in the second Conv layer and the FC layer. Batch normalization [142] is used in each Conv layer. Dropout [143] is adopted in the last Conv layer and the FC layer to prevent over-fitting. ReLU was chosen as the nonlinearities in the neural net.

The proposed framework for online power system topology identification is illustrated in Figure 2.3. The μPMU's data is first used for offline training of the pre-built CNN model. The trained model is then used for online identification of the power distribution network topology.
Figure 2.3: The proposed framework for power system online topology identification
Chapter 3: Simulation on MATLAB

3.1 Background

MATLAB is a multi-paradigm numerical computing environment and proprietary programming language developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages [144]. Simulink is a MATLAB-based graphical programming environment for modeling, simulating and analyzing multi-domain dynamical systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal processing for multi-domain simulations and model-based designs [145–147].

3.2 Scenario Generation

To run a model in MATLAB Simulink, we select the IEEE 34-Bus System as an example. This radial power distribution system is an actual feeder located in Arizona, the detailed information of which is provided in the Appendix A and its structure is illustrated in Figure A.1. The feeder’s nominal voltage is 24.9 kV and is characterized by:

1. Very long and lightly loaded overhead distribution lines
2. Two in-line regulators required to maintain a good voltage profile across the network
(3) A wye-wye grounded transformer reducing the voltage to 4.16 kV for a short section of the feeder.

(4) 24 unbalanced loading with both “spot” and “distributed” loads. Distributed loads are assumed to be evenly distributed on the distribution line.

(5) Shunt capacitors

Except for the power generator at node 800, we can see there is one transformer located between node 832 and node 888. And there are two regulators located between node 814 to node 850, and between node 852 to node 832, respectively. From the information list above, this radial feeder contains unbalanced phases. In order to show it more intuitively, the next step is to mark branches with different status in different colors, as shown in Figure 3.1.

Different colors are here used to mark the phasing status, e.g., pink is used to mark the line 800-812 as BACN, meaning that it is a three-phase
four-wire segment in the distribution grid, while line 808-810 is one-phase two-wire segment. Finally, to generate several scenarios, I added some details into the structure of the network as shown in Figure 3.2.

Figure 3.2: IEEE 34-Node Test Feeder Scenarios.

To gain a full observation of the IEEE 34-node test feeder as shown in Figure 3.2, I set 33 μPMUs on each node except node 800 (substation bus). In order to make the scenario more clear, I use the Table 3.2 here to mark the specific parameters involved. Table 3.1 shows the node a μPMU is connected to and the measurement captured at the measurement points.

Table 3.1: Full observation μPMU Components

<table>
<thead>
<tr>
<th>μPMU</th>
<th>802</th>
<th>820</th>
<th>832</th>
<th>848</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Voltage & angle, Current & angle)</td>
<td>806</td>
<td>822</td>
<td>888</td>
<td>860</td>
</tr>
<tr>
<td>(3×2, 3×2) if three-phase</td>
<td>808</td>
<td>824</td>
<td>890</td>
<td>836</td>
</tr>
<tr>
<td>(6, 6) if three-phase</td>
<td>810</td>
<td>826</td>
<td>858</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>812</td>
<td>828</td>
<td>864</td>
<td>862</td>
</tr>
<tr>
<td></td>
<td>814</td>
<td>830</td>
<td>834</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>854</td>
<td>842</td>
<td></td>
</tr>
<tr>
<td></td>
<td>816</td>
<td>856</td>
<td>844</td>
<td></td>
</tr>
<tr>
<td></td>
<td>818</td>
<td>852</td>
<td>846</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 3.2, in order to generate different electrical network topologies for the CNN training dataset, I also added 5 breakers to be able
to change the structure of the feeder by switching the breaker on and off. Additionally, to generate more scenarios under one topology, here I marked 5 loads, so the data could be varying under different realizations of the load demand.

Table 3.2: Network Model Specifications and Variables

<table>
<thead>
<tr>
<th>Breaker Name</th>
<th>SW 1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
<th>SW5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker Location</td>
<td>850-816</td>
<td>818-820</td>
<td>832-858</td>
<td>834-842</td>
<td>836-862</td>
</tr>
<tr>
<td>Load Name</td>
<td>Load1†</td>
<td>Load2‡</td>
<td>Load3‡</td>
<td>Load4</td>
<td>Load5</td>
</tr>
<tr>
<td>Location</td>
<td>824-828</td>
<td>820-822</td>
<td>858-834</td>
<td>844</td>
<td>840</td>
</tr>
</tbody>
</table>

* SW: Breaker
†: Distributed load

In this table, Load 1, 824-828 means it is a distributed load; Load 4, 844 means it is a spot load. It is known that I can generate different data through adjusting the impedance of the loads. But in MATLAB Simulink, the block parameter of Three-Phase Series RLC Load does not own the "impedance" parameter label, the panel is shown below in Figure 3.3. Accordingly, I turned to adjust active power, inductive reactive power, and capacitive reactive power of the load instead.

Table 3.3 shows the result of the final generated scenarios. Take Topology 2 as an example, where SW 1 was 1, SW 2 and 3 were 0, which means when Breaker 850-816 was closed (status=1), Breaker 818-820 and Breaker 832-858 were opened (status=0), and the entire branch behind 858 was off-line. The red 0 stands for assuming all the rest be opened for reducing the unnecessary calculations. Because all four loads expect Load 1 were off-line, the marked 0 means it is meaningless to discuss the load change. Due to the fact that the network Topology 5 is too similar with Topology 4
in terms of μPMU data, and Topology 1 and 2 could produce too little data which violates the balance in machine learning training data [148], keen considerations were taken in generating different load scenarios. Here we focus on 8 different topology scenarios that marked with gray blocks.

Table 3.4 shows the general operating status configuration of the 8
simulated network topologies, and the scenario number respectively.

Table 3.4: Network Topology Realizations with the Corresponding Number of Generated Scenarios

<table>
<thead>
<tr>
<th>Topology</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
<th>SW5</th>
<th>Number of Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1600</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2197</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2401</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2401</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2401</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2401</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3125</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3125</td>
</tr>
</tbody>
</table>

Let the load change amplitude be uniformly distributed between 95% to 105% of the rated demand at each load point. In Topology 1, only Load 1 and Load 2 are served through the connected distribution line and it is not necessary to adjust the remaining three load points for scenario generation. Assuming each load has 40 possible amplitudes in the constrained range above, the total number of scenarios is found 40^2 in this case, i.e., 1600. Under the network Topology 8, all five loads are being served in the distribution grid, and as each one is characterized with 5 possible amplitudes for the training process, there are 5^5, i.e., 3125, number of scenarios generated. The total number of generated scenarios that contribute to the training dataset is found 19651.

Figure 3.4 shows all topologies that I used to train the CNN. To summarize, I generated 19651 scenarios within 8 topologies, and there are 33 $μ$PMUs in the whole test feeder. The Figure 3.5 is an example for a 33 by 12 matrix that was generated under one scenario; The program I used to generate $μ$PMU data through MATLAB is attached in Appendix B.

As the screenshot of EXCEL shows above, columns A, B, and C stand
Figure 3.4: All Studied Network Topologies
Figure 3.5: Example of a µPMU Data.
for the three-phase normalized voltage values (divided by nominal voltage), columns D, E, and F stand for the voltage phase angle radian values divided by π. And the last 6 columns G to L are the same as the previous 6 columns but the voltage variables are replaced with the current. The rows 1 to 33 represent the 33 μPMUs. So all numbers in this matrix is ranged between 1.05 to -1.05, which are suitable for convolution calculations.

3.3 Simulink

To run the entire test feeder in MATLAB, the most important step is to model it in Simulink. Figure 3.6 shows the entire structure of the 34-Node Test Feeder.
Figure 3.6: The structure of 34-Node Test Feeder in Simulink
3.3.1 Environment Block

![Figure 3.7: PSB option menu block](image)

First, a "PSB option menu" block named "powergui" is added here, as Figure 3.7 shows. This block is an environment block for Simscape Electrical Specialized Power Systems models [149]. We choose the Simulation type as "Phasor", and set the Frequency to 60 Hz.

3.3.2 Power Source Block

From Appendix A, the feeder’s nominal voltage is 24.9 kV, which means the phase-to-phase nominal voltage is 24900 V. We then add a Three-Phase Source block from Simscape toolbox as the main voltage source shown below.

We set the configuration as "Yg" which means it is Y-connected to the ground. And select the specified internal voltages for each phase. For line-to-neutral voltage, it should be the phase-to-phase nominal voltage divided by $\sqrt{3}$ and multiplied by an efficiency factor (EF).

$$V_{\text{line-to-neutral}} = \frac{V_{\text{phase-to-phase nominal}}}{\sqrt{3}} \cdot EF \quad (3.1)$$

For short lines, the efficiency factor is 1.05 meaning that there should be 5% used to compensate the voltage drop inside the winding when the
Figure 3.8: The Three-Phase Source block
transformer is fully loaded. And for long lines, the first-end voltage should be 10% higher than the rated voltage of the line; that means the efficiency factor is 1.1, because there should be another 5% used to compensate the voltage loss of the long line. The frequency is the same as the "powergui" as 60 Hz. And the phase angles of the line-to-neutral voltages is 0°, -120°, and 120° because there is no lagging or leading for this test network. Second, we use the Load Flow Bus blocks to simulate spots, and use Three-Phase VI Measurement blocks to simulate μPMUs.

3.3.3 μPMU Block

As shown in Figure 3.9, μPMU 806 is connected to a three-phase distributed load; so the "connectors" parameter label in the Load Flow Bus block should be "ABC". The "Base voltage" is 24.9 kV/$\sqrt{3}$. And the "Swing bus or PV bus voltage" and the "Swing bus voltage angle" should be according to the reference in Appendix A.4, where the values are shown in Appendix A.4.2.

In the Three-Phase VI Measurement block, the "voltage measurement" should be "phase-to-ground". To measure phase-to-ground voltages in per unit, the block converts the measured voltages based on the peak value of the nominal phase-to-ground voltage as follows:

$$V_{abc}^{(pu)} = \frac{V_{\text{phase-to-ground}}}{V_{\text{base}}}, \quad (3.2)$$

where

$$V_{\text{base}} = \frac{V_{\text{nom}}}{\sqrt{3}} \cdot \sqrt{2} \quad (3.3)$$

And I set the "Base power" here to 1.5e6 VA, so that the output could be
converted into per-unit. The "Nominal voltage used for pu measurement" is 24.9 kV. And finally, I choose the "Output signals" as "Magnitude-Angle" to output the magnitudes and angles of the measured voltages and currents. Here I labeled each μPMU with voltage signal labels and current signal labels, so that all the results could be shown in "Data Inspector" after simulations.

3.3.4 Distribution Line Block

For distribution lines, we use the "Distributed Parameters Line" block from Simscape toolbox, as shown in Figure 3.10 to simulate the resistance of the distribution lines. As it shows, the distribution line 806-808 is a three-phase line, so the "Number of phases" should be 3. The "Frequency" should be the same as the main bus, 60 Hz. As for the "Resistance per unit length", "Inductance per unit length", and "Capacitance per unit length" blanks, they
should be 3 by 3 matrices for this three-phase segment. In "[r1 r0 r0m]", r1 means **positive resistances**, r0 means **zero-sequence resistances**, and r0m means **zero-sequence mutual resistances**. The rest symbols could be the same with "l" standing for inductance and "c" standing for capacitance.

Figure 3.10: Distributed Parameter Line Block in Simulink

In Table A.2, the line 806-808 owns the "Config." of 300, and from Appendix A.3, it is known that for "300 Config." lines:

\[
R_{300}' = \begin{bmatrix}
1.3368 & 0.2101 & 0.2130 \\
0.2101 & 1.3238 & 0.2066 \\
0.2130 & 0.2066 & 1.3294
\end{bmatrix} \quad (3.4)
\]

\[
X_{300}' = \begin{bmatrix}
1.3343 & 0.5779 & 0.5015 \\
0.5779 & 1.3569 & 0.4591 \\
0.5015 & 0.4591 & 1.3471
\end{bmatrix} \quad (3.5)
\]
We set the conversion factors as tabulated in Table 3.5:

Table 3.5: Convert Factors

<table>
<thead>
<tr>
<th>Unit Conversion</th>
<th>Symbol</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles to kilometers</td>
<td>mi²km</td>
<td>1.60934</td>
</tr>
<tr>
<td>feet to kilometers</td>
<td>ft²km</td>
<td>0.0003048</td>
</tr>
<tr>
<td>microsiemens to Farads</td>
<td>ms²F</td>
<td>((1 \times 10^{-6})/(2 \times \pi \times 60))</td>
</tr>
</tbody>
</table>

Finally, the three parameters in Figure 3.10 are converted to US customary units as follows:

\[
R_{300} = \frac{R'_{300}}{\text{mi}^2\text{km}},
\]

(3.7)

\[
L_{300} = \frac{X'_{300}}{\text{mi}^2\text{km} \cdot 2 \cdot \pi \cdot 60},
\]

(3.8)

\[
C_{300} = \frac{B'_{300}}{\text{mi}^2\text{km} \cdot \text{ms}^2\text{F}}
\]

(3.9)

3.3.5 Spot Load Block

There are 6 spot loads in IEEE 34-Node Test Feeder according to Table A.4, knowing that the load model for load 848 is "D-PQ", and \(V_{848} = [1.0311.0291.031] \cdot \sqrt{3}\). As Figure 3.11 shows, I here use the "Three-Phase Series RLC Load" block to represent the spot loads.

For spot load 848, the "Active power" \(P_{a_{848}} = [20 20 20]\) kW and "Inductive reactive power" \(P_{p_{848}} = [16 16 16]\) kVAR are set. The "Capacitive reactive power" is set to \(P_{n_{848}} = [150 150 150]\) kVAR according to Table A.6.
Hence, the "Configuration" should be "Delta", and "Nominal phase-to-phase voltage" should be \(V_{\text{848}} \cdot \frac{24.9}{\sqrt{3}} \) kV. The "Nominal frequency" remains the same, i.e., 60 Hz. For "Measurements", we select "Branch voltages and currents" to measure the three voltages and the three currents of the Three-Phase Series RLC Load block. And for "Load Flow", we choose "constant PQ", because "D-PQ" means the active power \(P \) and reactive power \(Q \) are kept constant and equal to the values specified on the Parameters tab of the block dialog box.

Notice that for some spot loads (e.g., load 844 and load 848 according to Table A.6 in IEEE 34-Node Test Feeder), the shunt capacitor is separated, so the parameter "Capacitive reactive power" should be set in another RLC load block with \(P_{a_{\text{848}}} \) and \(P_{a_{\text{848}}} \) be \([0 \ 0 \ 0]\), and "Nominal phase-to-phase voltage" be \([111]\) \(\cdot \frac{24.9}{\sqrt{3}} \) kV, and "Measurements" be "None", and "Load Flow" be "constant Z".
3.3.6 Distributed Load Block

There are 19 distributed loads in IEEE 34-Node Test Feeder according to Table A.5 knowing that the load model for load 828-830 is "Y-PQ", and \(V_{828-830} = [1.0071, 0.151, 0.111] \) kV according to Appendix A.4.4. The \(V_{828-830} \) should be multiplied by \(\sqrt{3} \) if it is Delta-connected. As Figure 3.12 shows, we here use the "Three-Phase Series RLC Load" block to represent the distributed loads.

![Figure 3.12: Distributed Load Block in Simulink](image)

In order to balance the distributed load, we here let the load 828-830 be divided into 2 equivalent loads and hung on both sides of the distribution line 828-830. For one equivalent load, the "Configuration" is "Y (grounded)" because it is Y-connected. The "Nominal phase-to-phase voltage" is \(V_{828-830} \cdot \frac{24.9}{\sqrt{3}} \) kV. The "Nominal frequency" is the same as 60 Hz. For distributed load 828-830, the "Active power" \(P_{a_{828-830}} = [700] \) kW, "Inductive reactive power" \(P_{p_{828-830}} = [300] \) kVAR, and "Capacitive reactive power" \(P_{n_{828-830}} = [000] \) kVAR are set, so the \(P_{p_{828-830}} \) does not need to be divided by 2. But in order to avoid errors in the simulation process, it is better to set all zeros into 1e-6. We set the "Measurements" be
"None", and "Load Flow" be "constant PQ".

3.3.7 Subsystem Block

As shown in Figure 3.6, the green square marked "Power-Flow Results" in the upper left corner collects all the data measured by the µPMUs of this test feeder, that is the Subsystem block.

The right hand side of Figure 3.13 shows a part of this Subsystem representing which types of µPMU data are collected. For example, for µPMU 812, the needed data are the voltage and currents; so two "From" blocks are linked with "V812" and "I812" where the labels in Figure 3.9 present the voltage and current captured by µPMU 812.
Chapter 4: Machine Learning with Python

4.1 Introduction

For the general loopy power grids, there may be multiple paths between two nodes. If power distribution grids are featured with minimum cycle length greater than three, the nodal voltages are sufficient for efficient topology estimation without additional assumptions on the system parameters. In contrast, the detection of line failures or status change using nodal voltages does not require any structural assumption on the network \[137, 138\].

As for the case of the IEEE 34-Node Test Feeder, the minimum cycle length in a radial graph is considered to be infinite as it has no cycles by definition. Hence, using nodal μPMU measurements, such as voltage and current phasors, real-time network topology estimation on the IEEE 34-node feeder system is effectively viable.

The problem of detecting the network topology change can recast as a classification problem based on the heatmaps which are obtained by the μPMUs measurements. The conventional classification approaches often involve manually designed features like thresholds and signatures in each scenario. However, these approaches require the human expertise and the type of topology it can detect would be limited. E.g., a threshold may be suitable for a certain topology, but if one node becomes offline in the electrical network, the threshold would not work anymore. This thesis proposed an artificial neural network platform that can learn the features (representations) of the data automatically.
4.2 The Proposed Framework

As shown in Figure 2.3, the µPMUs data collected from each bus in the distribution network is first used for offline training of the pre-built CNN model. The trained model is then used for online identification of the power distribution network topology. A flowchart of the proposed CNN is shown in Figure 4.1, where the first step is to collect µPMU data and normalize them into per-units. Such data with their corresponding topologies are then inputted into the neural network, and the trained network learns to identify distribution grid topology with µPMU measurements. The CNN used cross-entropy as the loss function. Finally, additional µPMU measurements beyond the training set were used to verify the model accuracy.

Figure 4.1: Proposed CNN Working Flowchart

This CNN architecture will be used as a building block in the proposed framework that identifies the power distribution network topology in real-time. Upon simulating each scenario in MATLAB Simulink environment, the resulting µPMU data will characterize a 33 by 12 heatmap matrix which contains three-phase voltage, three-phase voltage angle, three-phase current, and three-phase current angles. For the nodal measurements that...
contain single-phase or two-phase data, we let the remaining entries be zero. Then we line up the data in a heatmap format into four groups, process the data in each group individually, and finally integrate the information in each group together. A partially connected neural network is dedicated to the processing of these groups of heatmaps. In practice, a partially connected neural network is equivalent to a CNN. I design a CNN by carefully selecting the kernels in the first layer. As mentioned before, simulation of each scenario results in a heatmap (see Figure 4.2 for a heatmap example); these heatmaps are used as the inputs to the proposed CNN.

![Heatmap Example of the Generated \(\mu\)PMU Measurement Data Sample](image)

Comparing with the Figure 3.5, columns \(V_a\), \(V_b\) and \(V_c\) stand for the three-phase voltages; columns \(\theta_{V_a}\), \(\theta_{V_b}\) and \(\theta_{V_c}\) stand for the three-phase voltage angles; columns \(I_a\), \(I_b\) and \(I_c\) stand for the three-phase currents; columns \(\theta_{I_a}\), \(\theta_{I_b}\) and \(\theta_{I_c}\) stand for the three-phase current angles.
4.3 Programming in Pycharm

PyCharm is an integrated development environment (IDE) used in computer programming, specifically for the Python language. It is developed by the Czech company JetBrains [150]. The program used for CNN framework is available in Appendix C. CUDA is a parallel computing platform and application programming interface model created by Nvidia [151]. It allows software developers and software engineers to use a CUDA-enabled graphics processing unit for general purpose processing – an approach termed GPGPU [152]. We here used the "Cuda" function in the main program to accelerate the calculation operations. Due to the fact that the size of the IEEE 34-Node Test Feeder is not that huge, we here used the two layer neural network, as in Figure 2.2, to train the framework (see the program in Appendix C.3). The proposed framework also contains a new function that accounts for loading the heatmap data from the training dataset in Appendix C.4. The program in Appendix C.1 sorts the µPMU data into three folders, "Train", "Test", and "Val", under all the scenarios mentioned in Section 3.2. After calculating the mean and standard deviation through the program in Appendix C.2, the training dataset were loaded into the neural network. The "optimizer" is here selected to be "Adam" [153] and the activation function is ReLU.
Chapter 5: Numerical Case Study

5.1 Experiments Outline

As Figure 2.3 shows, the proposed deep learning framework is consisted of three parts. The first part is gathering μPMU data, the second part is training the CNN offline, and the third part is to identify the power grid topology by inputting real-time data into the trained neural network. In order to verify the practicality of the proposed framework, we here designed 5 experiments to verify the reliability of the framework:

(i) Train a neural network based on the proposed deep learning framework under full network observation, where the training data were collected from each and every node in the grid, and test the accuracy of the power grid topology identification using this network under the scenarios in the presence of interfered data, e.g., noisy data or missing data.

(ii) Train three neural networks based on the proposed deep learning framework under full network observation with interfered training data, test the accuracy of power grid topology estimation using the previously trained networks under the scenarios of inputting abnormal data beyond the training dataset.

(iii) Train several neural networks based on the proposed deep learning framework under partially observable network conditions with fewer number of installed μPMU sensors, in which the input heatmaps in the training dataset would miss one or more rows of data. Then test the accuracy of power grid topology identification using the previously trained networks.
(iv) For randomly missing \(\mu \text{PMU} \) measurements, train several neural networks based on the proposed deep learning framework under the sensor-rich scenarios, which is partial observation with two-third sensors, and with interfered training data. Then test the accuracy of power grid topology identification using the previously trained networks.

(v) For economic purposes, train several neural networks based on the proposed deep learning framework under the sensor-less scenario, with partial observability achieved through one-third sensors, in which the missing input data were manually selected. Then test the accuracy of power grid topology identification using the previously trained networks, find the minimum number of the \(\mu \text{PMU} \) sensor that could efficiently observe the whole grid.

5.2 Data Generation and Preprocessing

In the case of IEEE 34-Node Test Feeder, the obtained data are 33 by 12 heatmaps which stand for 33 \(\mu \text{PMU} \)’s data points (rows) and are consisted of the voltage, current, and phase angle information (columns) from the \(\mu \text{PMU} \) measurements. These \(\mu \text{PMU} \) measurements are obtained under full observations of all nodes in the power network as mentioned in Section 3.2 and generated in the MATLAB environment. The entire test feeder was built in Simulink, and all block parameters were set according to the data provided in Appendix A [6].

5.2.1 Parallel Simulation

In order to ease the simulation complexity and computational burden, we here used a technique of parallel simulation operation in Simulink [154].
which could run simulations of multiple scenarios simultaneously. As the program shows in Appendix B.2, the "parsim" function is used for parallel operations. The entry "simu_number=5" means that 5 cores of the computer CPU (central processing unit) are assigned as "worker", so that the system could run 5 scenarios in each simulation time.

5.2.2 Data Classification

After the µPMU measurements were captured, all scenarios should be classified into three folders: training dataset, testing dataset, and validation dataset, where each folder contains 8 topologies as presented in Table 3.3. In order to facilitate the CNN computation, the columns of the heatmaps (such as per-unit voltage and current values) were normalized through a zero-mean and unity variance distribution. We randomly separate 80% of the total simulation outputs as the training dataset, 10% for testing dataset, and 10% for validation dataset.

5.3 Results Analysis

5.3.1 Full Network Observation

First, a full observation in the network is studied where the data is collected at all 33 µPMU data in the test feeder as shown in Table 3.1. In order to test the performance of the proposed framework, the experiments were conducted that are closer to the realistic situations. In the first group experiments, different interferences were applied in the dataset. The interferences include both the noise and the missing data. The accuracy of the proposed topology identification framework in the conducted experiments is shown in Table 5.1. Wherein, one epoch of training means every sample
in the training dataset is used in the training of the CNN once, and the SNR refers to the Signal-to-Noise Ratio. One can see that as the number of training epochs increases, the accuracy also increases.

The "Validation Accuracy" in Table 5.1 corresponds to the condition when the neural network was trained by the training dataset, and the accuracy of identifying the electrical network topology is assessed using the validation dataset which is included in the training dataset; and the "Prediction Accuracy" refers to the condition when the neural network was trained by the testing dataset, and the accuracy of the network topology identification is assessed using the testing dataset which is excluded in the training dataset.

5.3.1.1 Topology Identification Analysis

Table 5.1: The identification accuracy of the interfered dataset under full observation

<table>
<thead>
<tr>
<th>Test Scenarios</th>
<th>Interference SNR (dB)</th>
<th>Number of Epochs</th>
<th>Best Validation Accuracy (%)</th>
<th>Best Prediction Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Measurement</td>
<td>10</td>
<td>5</td>
<td>98.81</td>
<td>98.72</td>
</tr>
<tr>
<td>Full Measurement</td>
<td>10</td>
<td>10</td>
<td>98.81</td>
<td>98.81</td>
</tr>
<tr>
<td>Full Measurement</td>
<td>10</td>
<td>20</td>
<td>99.86</td>
<td>99.95</td>
</tr>
<tr>
<td>Full Measurement</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Full Measurement</td>
<td>20-50*</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>-</td>
<td>20</td>
<td>99.91</td>
<td>99.95</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>99.95</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>99.95</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>10</td>
<td>20</td>
<td>99.95</td>
<td>99.82</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>10</td>
<td>20</td>
<td>98.86</td>
<td>98.99</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>20-50*</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*: the intensity of SNR is randomly selected in the range and applied on each data sample.

As one can see, the accuracy of the proposed electrical network topology identification scheme was never found lower than 95%. This is because for one epoch training, all the testing data were included in the training dataset.
For example, for full measurement containing 10dB SNR, and when the number of epochs is 20, the neural network was trained by the training dataset that contained 10dB SNR leading to an identification accuracy of 99.9%. Hence, the prediction accuracy could be achieved high as long as the neural network was trained well. In this situation, the prediction is actually called identification, because all scenarios are already known, taking advantage of a full observation. Additionally, when all measurements are available and the SNR is greater than 20dB, the proposed CNN can identify the system topology very accurately (the smaller the SNR, the greater the noise). Moreover, for well trained neural network, the more missing data in the training dataset, the greater the positive impact on the accuracy of the prediction engine.

5.3.1.2 Prediction Analysis

In the second group of experiments, the training and testing data are interfered with at different levels. The three "Training Data" in the first row represent three CNNs, which were trained by applying the datasets (i) containing 10dB SNR, (ii) containing one missing data with 10dB SNR, and (iii) containing two missing data with 10dB SNR respectively. The first column contains three situations which means the models are individually tested each with 800 samples (i.e., 100 μPMU data were generated for each network topology) but with 40dB SNR. The electrical network topology identification accuracy is shown in Table 5.2.

Note that in order to conduct the tests closer to the realistic situations, when generating the training dataset, the data are interfered by taking out the missing entries first, then adding noise; On the contrary, when testing the model, the data were added with noise first and then the missing entries
Table 5.2: The identification accuracy (%) by training and testing the CNN in different extents of interferences

<table>
<thead>
<tr>
<th>Test Data</th>
<th>Training Data</th>
<th>10dB SNR</th>
<th>Missing One Data and 10dB SNR</th>
<th>Missing Two Data and 10dB SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>40dB SNR</td>
<td></td>
<td>71.88</td>
<td>80.75</td>
<td>94.00</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>40dB SNR</td>
<td>72.75</td>
<td>80.63</td>
<td>93.62</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>40dB SNR</td>
<td>72.13</td>
<td>82.13</td>
<td>94.50</td>
</tr>
</tbody>
</table>

were studied. The test data were beyond the training dataset, which means that the neural network identifies the system topology by estimating from the unknown inputs. For example, for PMU data which contained 40dB SNR using the network which was trained well by the dataset containing 10dB SNR to estimate the system topology will result in an overall identification accuracy of 71.88%.

All these 9 cases achieve the accuracy greater than 70%. One can see that using the same testing data, if the training data has imperfections such as missing, and/or outlier values, interferences, but under a certain level, the trained neural network can provide more accurate results. This is because the imperfections or complications in the training dataset can make the neural network become more versatile, and thus, the trained network would perform better. In all, the trained CNN under the greatest level of interference achieves a satisfactory topology identification accuracy, implying that the proposed CNN has a very good capacity of generalizing the trained data to unseen inputs.

5.3.2 Missing µPMUs Observation

Table 5.1 shows that the proposed neural network framework could work well under the presence of missing data and noises. Hence, the next step
is to verify if the framework could also work well under missing \(\mu \text{PMUs} \) instead of individual data.

5.3.2.1 Missing A Few \(\mu \text{PMU} \) Sensors

For missing one \(\mu \text{PMU} \), that means a whole row of data in Figure 3.5 is missing, we here replaced the entries with zero to represent such cases. Table 5.3 shows the identification accuracy under missing different numbers of \(\mu \text{PMU} \).

Table 5.3: The identification accuracy of the interfered dataset under missing several \(\mu \text{PMUs} \) observations

<table>
<thead>
<tr>
<th>Test Scenarios</th>
<th>Number of Epochs</th>
<th>Best Validation Accuracy (%)</th>
<th>Best Prediction Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 (\mu \text{PMU}) Sensors</td>
<td>20</td>
<td>98.13</td>
<td>98.44</td>
</tr>
<tr>
<td>31 (\mu \text{PMUs}) Sensors</td>
<td>20</td>
<td>99.68</td>
<td>99.67</td>
</tr>
<tr>
<td>30 (\mu \text{PMUs}) Sensors</td>
<td>20</td>
<td>99.91</td>
<td>99.86</td>
</tr>
<tr>
<td>29 (\mu \text{PMUs}) Sensors*</td>
<td>20</td>
<td>98.02</td>
<td>97.94</td>
</tr>
<tr>
<td>28 (\mu \text{PMUs}) Sensors*</td>
<td>20</td>
<td>99.32</td>
<td>99.31</td>
</tr>
<tr>
<td>27 (\mu \text{PMUs}) Sensors*</td>
<td>20</td>
<td>99.22</td>
<td>98.99</td>
</tr>
<tr>
<td>22 (\mu \text{PMUs}) Sensors*</td>
<td>20</td>
<td>98.36</td>
<td>98.31</td>
</tr>
</tbody>
</table>

*: the zeroed rows were randomly generated so there may be duplicates.

It can be seen from the first 3 rows of the table above that as the number of missing \(\mu \text{PMUs} \) increased, the identification accuracy has also increased, which is in line with the conclusion obtained by Section 5.3.1.

From the case "Missing 4 \(\mu \text{PMUs} \)", the zeroed rows were randomly generated; Since it could be duplicate \(\mu \text{PMUs} \), the accuracy observation has a small fluctuation from "Missing 3" to "Missing 4". But the trend from "Missing 4" to "Missing 5" is also rising. The accuracy of the proposed framework under "Missing 6" drops a bit; it may be due to the error in the random training of the neural network or the loss of more than a certain range of \(\mu \text{PMUs} \). Hence, it can be seen that the accuracy of topology identification would not be sacrificed by missing a few \(\mu \text{PMU} \) sensors in the grid.
5.3.2.2 Partial Observability with Two-Third of μPMU Sensors

Figure 5.1: The topology observation with 22 μPMU sensors

From Table 5.1, it can be seen that the accuracy of the topology identification and estimation is high under full network observation. Although a comprehensive observation can give a very accurate forecast, it will undoubtedly increase the cost of the electrical equipment (investment costs of PMUs) and maintenance. It is therefore necessary to employ and study the least number of μPMUs to observe the entire electrical network. Since the full observation needs 33 μPMUs across the network (one sensor at each node), we here use 22 μPMUs, which are the two-third of μPMUs in the network, to observe the entire test feeder, and see how accurate the proposed analytics are under such circumstances.

The locations of the μPMUs cannot be randomly selected as in Section 5.3.2. The criterion for μPMU removal is by checking whether it is a duplicate μPMU on a same branch with no topology change. The remaining 22 μPMUs are shown in Table 5.4. Comparing with Table 5.1, Table 5.5 below shows the identification accuracy of different cases under the availability
Table 5.4: 22 μPMU Components

<table>
<thead>
<tr>
<th>μPMU Components</th>
<th>808</th>
<th>822</th>
<th>890</th>
<th>836</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Voltage & angle, Current & angle)</td>
<td>810</td>
<td>824</td>
<td>858</td>
<td>840</td>
</tr>
<tr>
<td>(3×2, 3×2) if three-phase</td>
<td>814</td>
<td>826</td>
<td>864</td>
<td>862</td>
</tr>
<tr>
<td>(6, 6) if three-phase</td>
<td>850</td>
<td>854</td>
<td>834</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td>816</td>
<td>856</td>
<td>844</td>
<td></td>
</tr>
<tr>
<td></td>
<td>818</td>
<td>832</td>
<td>848</td>
<td></td>
</tr>
</tbody>
</table>

of two-third of the μPMUs in the network.

Table 5.5: The identification accuracy of the interfered dataset under the two-third μPMUs observation

<table>
<thead>
<tr>
<th>Test Scenarios</th>
<th>Interference SNR (dB)</th>
<th>Number of Epochs</th>
<th>Best Validation Accuracy (%)</th>
<th>Best Prediction Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Third Measurement</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Two-Third Measurement</td>
<td>10</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>100.05</td>
</tr>
<tr>
<td>Missing One Data</td>
<td>20</td>
<td>20</td>
<td>99.95</td>
<td></td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>10</td>
<td>20</td>
<td>100.04</td>
<td></td>
</tr>
<tr>
<td>Missing One Data</td>
<td>10</td>
<td>20</td>
<td>99.82</td>
<td></td>
</tr>
<tr>
<td>Missing Two Data</td>
<td>10</td>
<td>20</td>
<td>99.73</td>
<td></td>
</tr>
</tbody>
</table>

It is obvious that the validation accuracy and prediction accuracy are both achieved the same high of full observation under the two-third observation, which means the neural network framework could also work accurately under the two-third observation. Because the μPMUs are reduced randomly, this experimental conclusion can save one-third of the cost on the premise of ensuring the accuracy of power grid topology identification.

5.3.2.3 Partial Observability with One-Third μPMUs Sensors

Since the two-third observation could work accurately, we here observe the power grid with even fewer number of μPMUs. Figure 5.2 below shows a scenario in which 12 number of μPMUs are used to observe the entire network. Similarly, the locations of the μPMUs are specifically selected.
Figure 5.2: The topology observation with 12 \(\mu \)PMU sensors

Table 5.6: 12 \(\mu \)PMU Components

<table>
<thead>
<tr>
<th>(\mu)PMU</th>
<th>808</th>
<th>822</th>
<th>844</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Voltage & angle, Current & angle)</td>
<td>816</td>
<td>832</td>
<td>836</td>
</tr>
<tr>
<td>(3(\times)2, 3(\times)2) if three-phase</td>
<td>822</td>
<td>858</td>
<td>840</td>
</tr>
<tr>
<td>(6, 6) if three-phase</td>
<td>824</td>
<td>834</td>
<td>862</td>
</tr>
</tbody>
</table>
Table 5.7: Different numbers of μPMU Observation

<table>
<thead>
<tr>
<th>Number of μPMU</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>808</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>816</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>822</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>824</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>854</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>832</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>858</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>834</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>844</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>836</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>840</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>862</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

| Best Validation Accuracy (%) | 100 | 100 | 98.72 | 94.11 | 88.82 | 88.99 | 98.45 | 54.52 |
| Best Prediction Accuracy (%) | 100 | 100 | 98.99 | 93.96 | 88.59 | 89.01 | 98.63 | 54.49 |

√: be picked to observe the power grid.

The accuracy of the proposed topology identification algorithm with 12 μPMUs is found still high and promising. Table 5.7 summarizes several conditions and the corresponding accuracy. The conclusion that can be drawn is under the situation of 5 breakers, placing at least 6 μPMUs in suitable locations can ensure the accuracy of the observation of the entire power grid. The accuracy of case "5 μPMUs" has significantly reduced because of the loss of μPMU 862, which is the only one that could observe the breaking of "SW 5".

The overall observation is that as the number of μPMUs decreases, the topology identification accuracy continues to decline. The accuracy of "6 μPMUs" is achieved high which is most likely because the 5 breakers divided the test feeder into 6 zones, and the 6 manually selected μPMU positions are corresponded to 6 zones respectively. So the neural network can easily
distinguish their "0-1" situations. For manual selection of μPMU installation locations, one needs to ensure that there is at least one μPMU sensor on each independent power grid sub-branch, so that the actual minimum number of μPMUs installed is equal to the number of the sub-branch plus one. Hence, a full observation in the network will be achieved, enabling to harness the measurements for effective topology identification in real-time.
Chapter 6: Conclusion

6.1 Summary of Current Work

This thesis presents a deep learning framework for online detection of power distribution system topology. The proposed framework can handle missing measurements under unbalanced operating states in power distribution systems, and real-time topology identification (for within known database), and estimation (for the beyond known database) of the system topology following disturbances. The proposed framework utilizes phasor measurements from μPMUs at all buses (full observation) and a number of selected buses (partial observation). For estimation (prediction), the approach is manually adding several μPMU datasets that contain missing entries or noise or both, and test them with a trained neural network.

The experiments show that the proposed CNN framework not only handles the data with the same level of interference (noise and missing measurements), but also has the capacity of estimating the interfered data which has different distributions from the training examples. Numerical experiments proved that the proposed trained network can almost accurately identify the power network topology corresponding to the observed data beyond the training dataset. For random loss of μPMUs, the availability of μPMUs at two-thirds of the network buses can guarantee around 98% accuracy in the topology identification; For specifically generated scenarios, the number of μPMUs that can promise the high identification accuracy should be equal to the number of branches that can be independent.
6.2 Future Research

Future work could be targeted at implementing the proposed framework on a larger real-world power grid, such as the IEEE 123-bus test system, and validating the results accuracy and computational effectiveness during real-time applications. Moreover, the performance of the proposed analytics in power grids with high penetration of renewable energy resources and energy storage technologies should be investigated [155-175]. Moreover, the role and performance of the proposed solutions in an integrated ecosystem of critical infrastructures (e.g., transportation, water, communication, etc) should be analyzed [176].

Additionally, the CNN optimizer was selected as "Adam" [153], which is an optimization algorithm that can be used instead of the classical stochastic gradient descent procedure to update the network weights iteratively based on the training data. There are also many other algorithms that could be tested and analyzed. Each algorithm owned its advantages and shortcomings. Hence, follow-up research could try to use different algorithms and compare their performance in the network topology identification application. Additionally, this thesis mainly used CNN by training the PMU datasets to predict the power system topology, where the Python library in this thesis was Pytorch. There are some other libraries like TensorFlow and Keras that could be explored. Besides CNN, there are also many other ML algorithms, such as Support Vector Machine (SVM), Autoencoder (AE), and Capsule Neural Network (CapsNet), that could be approached in this application and under a variety of operating conditions in the power grid.
Bibliography

Appendix A: IEEE 34 Node Test Feeder

A.1 Introduction

This feeder is an actual feeder located in Arizona. The feeder’s nominal voltage is 24.9 kV. It is characterized by:

(1) Very long and lightly loaded overhead distribution lines

(2) Two in-line regulators required to maintain a good voltage profile across the network

(3) A wye-wye grounded transformer reducing the voltage to 4.16 kV for a short section of the feeder

(4) 24 unbalanced loading with both “spot” and “distributed” loads. Distributed loads are assumed to be evenly distributed on the distribution line.
(5) Shunt capacitors

Because of the length of the feeder and the unbalanced loading, the system may at times have a convergence problem.

A.2 System Data

Here are the data forms originated from the IEEE PES AMPS DSAS test feeder working group [6].

Table A.1: Overhead Line Configurations [6]

<table>
<thead>
<tr>
<th>Config.</th>
<th>Phasing</th>
<th>Phase ACSR</th>
<th>Neutral ACSR</th>
<th>Spacing ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>BACN</td>
<td>1/0</td>
<td>1/0</td>
<td>500</td>
</tr>
<tr>
<td>301</td>
<td>BACN</td>
<td>#2 6/1</td>
<td>#2 6/1</td>
<td>500</td>
</tr>
<tr>
<td>302</td>
<td>AN</td>
<td>#4 6/1</td>
<td>#4 6/1</td>
<td>510</td>
</tr>
<tr>
<td>303</td>
<td>BN</td>
<td>#4 6/1</td>
<td>#4 6/1</td>
<td>510</td>
</tr>
<tr>
<td>304</td>
<td>BN</td>
<td>#2 6/1</td>
<td>#2 6/1</td>
<td>510</td>
</tr>
</tbody>
</table>

1 ACSR: Aluminum conductor steel reinforced.
Table A.2: Line Segment Data [6]

<table>
<thead>
<tr>
<th>Node A</th>
<th>Node B</th>
<th>Length (ft.)</th>
<th>Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>802</td>
<td>2580</td>
<td>300</td>
</tr>
<tr>
<td>802</td>
<td>806</td>
<td>1730</td>
<td>300</td>
</tr>
<tr>
<td>806</td>
<td>808</td>
<td>32230</td>
<td>300</td>
</tr>
<tr>
<td>808</td>
<td>810</td>
<td>5804</td>
<td>303</td>
</tr>
<tr>
<td>808</td>
<td>812</td>
<td>37500</td>
<td>300</td>
</tr>
<tr>
<td>812</td>
<td>814</td>
<td>29730</td>
<td>300</td>
</tr>
<tr>
<td>814</td>
<td>850</td>
<td>10</td>
<td>301</td>
</tr>
<tr>
<td>816</td>
<td>818</td>
<td>1710</td>
<td>302</td>
</tr>
<tr>
<td>816</td>
<td>824</td>
<td>10210</td>
<td>301</td>
</tr>
<tr>
<td>818</td>
<td>820</td>
<td>48150</td>
<td>302</td>
</tr>
<tr>
<td>820</td>
<td>822</td>
<td>13740</td>
<td>302</td>
</tr>
<tr>
<td>824</td>
<td>826</td>
<td>3030</td>
<td>303</td>
</tr>
<tr>
<td>824</td>
<td>828</td>
<td>840</td>
<td>301</td>
</tr>
<tr>
<td>828</td>
<td>830</td>
<td>20440</td>
<td>301</td>
</tr>
<tr>
<td>830</td>
<td>854</td>
<td>520</td>
<td>301</td>
</tr>
<tr>
<td>832</td>
<td>858</td>
<td>4900</td>
<td>301</td>
</tr>
<tr>
<td>832</td>
<td>888</td>
<td>0</td>
<td>XFM-1</td>
</tr>
<tr>
<td>834</td>
<td>860</td>
<td>2020</td>
<td>301</td>
</tr>
<tr>
<td>834</td>
<td>842</td>
<td>280</td>
<td>301</td>
</tr>
<tr>
<td>836</td>
<td>840</td>
<td>860</td>
<td>301</td>
</tr>
<tr>
<td>836</td>
<td>862</td>
<td>280</td>
<td>301</td>
</tr>
<tr>
<td>842</td>
<td>844</td>
<td>1350</td>
<td>301</td>
</tr>
<tr>
<td>844</td>
<td>846</td>
<td>3640</td>
<td>301</td>
</tr>
<tr>
<td>846</td>
<td>848</td>
<td>530</td>
<td>301</td>
</tr>
<tr>
<td>850</td>
<td>816</td>
<td>130</td>
<td>301</td>
</tr>
<tr>
<td>852</td>
<td>832</td>
<td>10</td>
<td>301</td>
</tr>
<tr>
<td>854</td>
<td>856</td>
<td>23330</td>
<td>303</td>
</tr>
<tr>
<td>854</td>
<td>852</td>
<td>36830</td>
<td>301</td>
</tr>
<tr>
<td>858</td>
<td>864</td>
<td>1620</td>
<td>302</td>
</tr>
<tr>
<td>858</td>
<td>834</td>
<td>5830</td>
<td>301</td>
</tr>
<tr>
<td>860</td>
<td>836</td>
<td>2680</td>
<td>301</td>
</tr>
<tr>
<td>862</td>
<td>838</td>
<td>4860</td>
<td>304</td>
</tr>
<tr>
<td>888</td>
<td>890</td>
<td>10560</td>
<td>300</td>
</tr>
</tbody>
</table>

Table A.3: Transformer Data [6]

<table>
<thead>
<tr>
<th></th>
<th>kVA</th>
<th>kV - high</th>
<th>kV - low</th>
<th>R - %</th>
<th>X - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation</td>
<td>2500</td>
<td>69 - D</td>
<td>24.9 - Gr.W</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>XFM-1</td>
<td>500</td>
<td>24.9 - Gr.W</td>
<td>24.9 - Gr.W</td>
<td>1.9</td>
<td>4.08</td>
</tr>
</tbody>
</table>
Table A.4: Spot Loads

<table>
<thead>
<tr>
<th>Node</th>
<th>Load Model</th>
<th>Ph-1 kW</th>
<th>Ph-1 kVar</th>
<th>Ph-2 kW</th>
<th>Ph-2 kVar</th>
<th>Ph-3 kW</th>
<th>Ph-3 kVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>860</td>
<td>Y-PQ</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>802</td>
<td>Y-I</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>806</td>
<td>Y-Z</td>
<td>135</td>
<td>105</td>
<td>135</td>
<td>105</td>
<td>135</td>
<td>105</td>
</tr>
<tr>
<td>808</td>
<td>D-PQ</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>808</td>
<td>D-I</td>
<td>150</td>
<td>75</td>
<td>150</td>
<td>75</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>812</td>
<td>D-Z</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 344 224 344 224 359 229

Table A.5: Distributed Loads

<table>
<thead>
<tr>
<th>Node A</th>
<th>Node B</th>
<th>Load Model</th>
<th>Ph-1 kW</th>
<th>Ph-1 kVar</th>
<th>Ph-2 kW</th>
<th>Ph-2 kVar</th>
<th>Ph-3 kW</th>
<th>Ph-3 kVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>802</td>
<td>806</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>15</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>808</td>
<td>810</td>
<td>Y-I</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>818</td>
<td>820</td>
<td>Y-Z</td>
<td>34</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>820</td>
<td>822</td>
<td>Y-PQ</td>
<td>135</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>816</td>
<td>824</td>
<td>D-I</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>824</td>
<td>826</td>
<td>Y-I</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>824</td>
<td>828</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>828</td>
<td>830</td>
<td>Y-PQ</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>854</td>
<td>856</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>832</td>
<td>858</td>
<td>D-Z</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>858</td>
<td>864</td>
<td>Y-PQ</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>858</td>
<td>834</td>
<td>D-PQ</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>8</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>834</td>
<td>860</td>
<td>D-Z</td>
<td>16</td>
<td>8</td>
<td>20</td>
<td>10</td>
<td>110</td>
<td>55</td>
</tr>
<tr>
<td>860</td>
<td>836</td>
<td>D-PQ</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>42</td>
<td>22</td>
</tr>
<tr>
<td>836</td>
<td>840</td>
<td>D-I</td>
<td>18</td>
<td>9</td>
<td>22</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>862</td>
<td>838</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>842</td>
<td>844</td>
<td>Y-PQ</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>844</td>
<td>846</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>12</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>846</td>
<td>848</td>
<td>Y-PQ</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 262 133 240 120 220 114
Table A.6: Shunt Capacitors

<table>
<thead>
<tr>
<th>Node</th>
<th>Ph-A kVAR</th>
<th>Ph-B kVAR</th>
<th>Ph-C kVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>844</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>848</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Table A.7: Regulator Data

<table>
<thead>
<tr>
<th>Regulator ID</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Segment</td>
<td>814-850</td>
<td>852-832</td>
</tr>
<tr>
<td>Location</td>
<td>814</td>
<td>852</td>
</tr>
<tr>
<td>Phases</td>
<td>A-B-C</td>
<td>A-B-C</td>
</tr>
<tr>
<td>Connection</td>
<td>3-Ph, LG</td>
<td>3-Ph, LG</td>
</tr>
<tr>
<td>Monitoring Phase</td>
<td>A-B-C</td>
<td>A-B-C</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>2.0 volts</td>
<td>2.0 volts</td>
</tr>
<tr>
<td>PT Ratio</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Primary CT Rating</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Compensator Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Setting</td>
<td>Ph-A: 2.7 Ph-B: 2.7 Ph-C: 2.7</td>
<td>Ph-A: 2.5 Ph-B: 2.5 Ph-C: 2.5</td>
</tr>
<tr>
<td>X-Setting</td>
<td>Ph-A: 1.6 Ph-B: 1.6 Ph-C: 1.6</td>
<td>Ph-A: 1.6 Ph-B: 1.6 Ph-C: 1.6</td>
</tr>
<tr>
<td>Voltage Level</td>
<td>Ph-A: 122 Ph-B: 122 Ph-C: 122</td>
<td>Ph-A: 124 Ph-B: 124 Ph-C: 124</td>
</tr>
</tbody>
</table>
A.3 Impedances

Configuration 300:

<table>
<thead>
<tr>
<th></th>
<th>Z (R +jX) in ohms per mile</th>
<th>B in micro Siemens per mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.3368 1.3343 0.2101 0.5779</td>
<td>5.3350 −1.5313 −0.9943</td>
</tr>
<tr>
<td></td>
<td>1.3238 1.3569 0.2066 0.4591</td>
<td>5.0979 −0.6212</td>
</tr>
<tr>
<td></td>
<td>1.3294 1.3471</td>
<td></td>
</tr>
</tbody>
</table>

Configuration 301:

<table>
<thead>
<tr>
<th></th>
<th>Z (R +jX) in ohms per mile</th>
<th>B in micro Siemens per mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.9300 1.4115 0.2327 0.6442</td>
<td>5.1207 −1.4364 −0.9402</td>
</tr>
<tr>
<td></td>
<td>1.9157 1.4281 0.2288 0.5238</td>
<td>4.9055 −0.5951</td>
</tr>
<tr>
<td></td>
<td>1.9219 1.4209</td>
<td></td>
</tr>
</tbody>
</table>

Configuration 302:

<table>
<thead>
<tr>
<th></th>
<th>Z (R +jX) in ohms per mile</th>
<th>B in micro Siemens per mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.7995 1.4855 0.0000 0.0000</td>
<td>4.2251 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0000 0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0000 0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Configuration 303:

<table>
<thead>
<tr>
<th></th>
<th>Z (R +jX) in ohms per mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0000 0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000 0.0000 0.0000 0.0000</td>
</tr>
</tbody>
</table>
A.4 Power Flow Results

A.4.1 Radial Flow Summary

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>PHASE</th>
<th>PHASE</th>
<th>PHASE</th>
<th>PHASE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>759.136</td>
<td>666.663</td>
<td>617.072</td>
<td>2042.872</td>
<td></td>
</tr>
<tr>
<td>kVar</td>
<td>171.727</td>
<td>90.137</td>
<td>28.394</td>
<td>290.258</td>
<td></td>
</tr>
<tr>
<td>kVA</td>
<td>778.318</td>
<td>672.729</td>
<td>617.725</td>
<td>2063.389</td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>.9754</td>
<td>.9910</td>
<td>.9989</td>
<td>.9901</td>
<td></td>
</tr>
</tbody>
</table>

LOAD | (A-N) | (A-B) | (B-N) | (B-C) | (C-N) | (C-A) | WYE | DELTA |
kW	359.9	246.4	339.3	243.1	221.8	359.0	921.0	848.8
TOT	606.322	582.662	580.840	1769.824				
kVar	230.9	128.7	216.9	128.7	161.8	184.6	609.6	441.9
TOT	359.531	345.609	346.407	1051.547				
kVA : 427.6 278.0 402.7 275.3 274.6 403.7 1104.5 957.0
TOT : 704.903 | 677.452 | 676.293 | 2058.647
PF : .8417 .8864 .8425 .8840 .8078 .8894 .8339 .8870
TOT : .8601 | .8601 | .8589 | .8597

A.4.2 Voltage Profile

SUBSTATION: IEEE 34; FEEDER: IEEE 34

<table>
<thead>
<tr>
<th>NODE</th>
<th>MAG ANGLE</th>
<th>MAG ANGLE</th>
<th>MAG ANGLE</th>
<th>MAG ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-N</td>
<td>B-N</td>
<td>C-N</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1.0500 at .00</td>
<td>1.0500 at −120.00</td>
<td>1.0500 at 120.00</td>
<td>.000</td>
</tr>
<tr>
<td>802</td>
<td>1.0475 at −.05</td>
<td>1.0484 at −120.07</td>
<td>1.0484 at 119.95</td>
<td>.489</td>
</tr>
<tr>
<td>806</td>
<td>1.0457 at −.08</td>
<td>1.0474 at −120.11</td>
<td>1.0474 at 119.92</td>
<td>.816</td>
</tr>
<tr>
<td>808</td>
<td>1.0136 at −.75</td>
<td>1.0296 at −120.95</td>
<td>1.0289 at 119.30</td>
<td>6.920</td>
</tr>
<tr>
<td>810</td>
<td>1.0129 at −120.95</td>
<td>1.0294 at −120.95</td>
<td>1.0294 at 119.30</td>
<td>6.920</td>
</tr>
<tr>
<td>812</td>
<td>.9763 at −1.57</td>
<td>1.0100 at −121.92</td>
<td>1.0069 at 118.59</td>
<td>14.023</td>
</tr>
<tr>
<td>814</td>
<td>.9467 at −2.26</td>
<td>.9945 at −122.70</td>
<td>.9893 at 118.01</td>
<td>19.653</td>
</tr>
<tr>
<td>RG10</td>
<td>1.0177 at −2.26</td>
<td>1.0255 at −122.70</td>
<td>1.0203 at 118.01</td>
<td>19.654</td>
</tr>
<tr>
<td>850</td>
<td>1.0176 at −2.26</td>
<td>1.0255 at −122.70</td>
<td>1.0203 at 118.01</td>
<td>19.654</td>
</tr>
<tr>
<td>816</td>
<td>1.0172 at −2.26</td>
<td>1.0253 at −122.71</td>
<td>1.0200 at 118.01</td>
<td>19.714</td>
</tr>
<tr>
<td>818</td>
<td>1.0163 at −2.27</td>
<td>1.0253 at −122.71</td>
<td>1.0200 at 118.01</td>
<td>19.714</td>
</tr>
<tr>
<td>820</td>
<td>.9926 at −2.32</td>
<td>1.0253 at −122.71</td>
<td>1.0200 at 118.01</td>
<td>19.714</td>
</tr>
<tr>
<td>822</td>
<td>.9895 at −2.33</td>
<td>1.0253 at −122.71</td>
<td>1.0200 at 118.01</td>
<td>19.714</td>
</tr>
</tbody>
</table>

81
Voltage Regulator Data

<table>
<thead>
<tr>
<th>NODE</th>
<th>VREG</th>
<th>SEG</th>
<th>MODEL</th>
<th>OPT</th>
<th>HNOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
<td>RG10</td>
<td>850</td>
<td>Phase A & B & C, Wye</td>
<td>RX</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE</th>
<th>LDCTR</th>
<th>VOLT HOLD</th>
<th>R-VOLT</th>
<th>X-VOLT</th>
<th>PT RATIO</th>
<th>CT RATE</th>
<th>TAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122.000</td>
<td>2.700</td>
<td>1.600</td>
<td>120.00</td>
<td>100.00</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>122.000</td>
<td>2.700</td>
<td>1.600</td>
<td>120.00</td>
<td>100.00</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>122.000</td>
<td>2.700</td>
<td>1.600</td>
<td>120.00</td>
<td>100.00</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
A.4.4 Radial Power Flow

--- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:34:32 HOURS ---
SUBSTATION: IEEE 34; FEEDER: IEEE 34

<table>
<thead>
<tr>
<th>NODE</th>
<th>VALUE</th>
<th>PHASE A</th>
<th>PHASE B</th>
<th>PHASE C</th>
<th>UNT O/L<</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE: 800</td>
<td>VOLTS:</td>
<td>1.050</td>
<td>.00</td>
<td>1.050</td>
<td>-120.00</td>
</tr>
<tr>
<td></td>
<td>kVll</td>
<td>24.900</td>
<td>NO LOAD OR CAPACITOR REPRESENTED AT SOURCE NODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO NODE 802</td>
<td>........:</td>
<td>51.56</td>
<td>-12.74</td>
<td>44.57</td>
<td>-127.70</td>
</tr>
<tr>
<td><802 > LOSS=</td>
<td>3.472:</td>
<td>(1.637)</td>
<td>(.978)</td>
<td>(.858)</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>NODE: 802</td>
<td>VOLTS:</td>
<td>1.047</td>
<td>-.05</td>
<td>1.048</td>
<td>-120.07</td>
</tr>
<tr>
<td></td>
<td>kVll</td>
<td>24.900</td>
<td>CAP:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>FROM NODE 800</td>
<td>.......:</td>
<td>51.58</td>
<td>-12.80</td>
<td>44.57</td>
<td>-127.76</td>
</tr>
<tr>
<td><802 > LOSS=</td>
<td>3.472:</td>
<td>(1.637)</td>
<td>(.978)</td>
<td>(.858)</td>
<td>kW</td>
</tr>
<tr>
<td>TO NODE 806</td>
<td>........:</td>
<td>51.58</td>
<td>-12.80</td>
<td>44.57</td>
<td>-127.76</td>
</tr>
<tr>
<td><806 > LOSS=</td>
<td>2.272:</td>
<td>(1.102)</td>
<td>(.618)</td>
<td>(.552)</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>NODE: 806</td>
<td>VOLTS:</td>
<td>1.046</td>
<td>-.08</td>
<td>1.047</td>
<td>-120.11</td>
</tr>
<tr>
<td></td>
<td>kVll</td>
<td>24.900</td>
<td>CAP:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>FROM NODE 802</td>
<td>.......:</td>
<td>51.59</td>
<td>-12.83</td>
<td>42.47</td>
<td>-126.83</td>
</tr>
<tr>
<td><806 > LOSS=</td>
<td>2.272:</td>
<td>(1.102)</td>
<td>(.618)</td>
<td>(.552)</td>
<td>kW</td>
</tr>
<tr>
<td>TO NODE 808</td>
<td>........:</td>
<td>51.59</td>
<td>-12.83</td>
<td>42.47</td>
<td>-126.83</td>
</tr>
<tr>
<td><808 > LOSS=</td>
<td>41.339:</td>
<td>(20.677)</td>
<td>(10.780)</td>
<td>(9.882)</td>
<td>kW</td>
</tr>
<tr>
<td>NODE: 808</td>
<td>VOLTS: 1.014</td>
<td>1.030</td>
<td>−120.95</td>
<td>1.029</td>
<td>119.30</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>−LD: .00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>kW/kVR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kVll 24.900</td>
<td>CAP: .00</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 806</td>
<td>.......: 51.76</td>
<td>−13.47</td>
<td>42.46</td>
<td>−127.59</td>
<td>39.28</td>
</tr>
<tr>
<td><806 > LOSS= 41.339: (20.677)</td>
<td>(10.780)</td>
<td>(9.882)</td>
<td>kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO NODE 810</td>
<td>.........: 1.22</td>
<td>−144.62</td>
<td>AMP/DG</td>
<td></td>
<td></td>
</tr>
<tr>
<td><810 > LOSS= .002:</td>
<td>(0.002)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO NODE 812</td>
<td>.......: 51.76</td>
<td>−13.47</td>
<td>41.30</td>
<td>−127.10</td>
<td>39.28</td>
</tr>
<tr>
<td><812 > LOSS= 47.531:</td>
<td>(24.126)</td>
<td>(11.644)</td>
<td>(11.761)</td>
<td>kW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE: 810</th>
<th>VOLTS: 1.029</th>
<th>−120.95</th>
<th>MAG/ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>−LD: .00</td>
<td>.00</td>
<td>kW/kVR</td>
<td></td>
</tr>
<tr>
<td>kVll 24.900</td>
<td>CAP: .00</td>
<td>.00</td>
<td>kW</td>
</tr>
<tr>
<td>FROM NODE 808</td>
<td>.......: .00</td>
<td>.00</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><808 > LOSS= .002:</td>
<td>(0.002)</td>
<td>kW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE: 812</th>
<th>VOLTS: .976</th>
<th>−1.57</th>
<th>1.010</th>
<th>−121.92</th>
<th>1.007</th>
<th>118.59</th>
<th>MAG/ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>−LD: .00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>kVll 24.900</td>
<td>CAP: .00</td>
<td>.00</td>
<td>.00</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 808</td>
<td>.......: 51.95</td>
<td>−14.18</td>
<td>41.29</td>
<td>−127.99</td>
<td>39.33</td>
<td>116.90</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><812 > LOSS= 47.531:</td>
<td>(24.126)</td>
<td>(11.644)</td>
<td>(11.761)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO NODE 814</td>
<td>.........: 51.95</td>
<td>−14.18</td>
<td>41.29</td>
<td>−127.99</td>
<td>39.33</td>
<td>116.90</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><814 > LOSS= 37.790:</td>
<td>(19.245)</td>
<td>(9.140)</td>
<td>(9.404)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE: 814</th>
<th>VOLTS: .947</th>
<th>−2.26</th>
<th>.994</th>
<th>−122.70</th>
<th>.989</th>
<th>118.01</th>
<th>MAG/ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>−LD: .00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>kVll 24.900</td>
<td>CAP: .00</td>
<td>.00</td>
<td>.00</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 812</td>
<td>.......: 52.10</td>
<td>−14.73</td>
<td>41.29</td>
<td>−128.69</td>
<td>39.37</td>
<td>116.23</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><814 > LOSS= 37.790:</td>
<td>(19.245)</td>
<td>(9.140)</td>
<td>(9.404)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO NODE RG10</td>
<td>.......: 52.10</td>
<td>−14.73</td>
<td>41.29</td>
<td>−128.69</td>
<td>39.37</td>
<td>116.23</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><RG10 > LOSS= .000:</td>
<td>(.000)</td>
<td>(.000)</td>
<td>(.000)</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODE: RG10</th>
<th>VOLTS: 1.018</th>
<th>−2.26</th>
<th>1.026</th>
<th>−122.70</th>
<th>1.020</th>
<th>118.01</th>
<th>MAG/ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>−LD: .00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>kVll 24.900</td>
<td>CAP: .00</td>
<td>.00</td>
<td>.00</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 814</td>
<td>.......: 48.47</td>
<td>−14.73</td>
<td>40.04</td>
<td>−128.69</td>
<td>38.17</td>
<td>116.23</td>
<td>AMP/DG</td>
</tr>
</tbody>
</table>

<RG10 > LOSS= .000: (.000) (.000) (.000) kW
TO NODE 850: 48.47 -14.73 40.04 -128.69 38.17 116.23 AMP/DG
<850 > LOSS= .017: (.008) (.005) (.005) kW

NODE: 850 VOLTS: 1.018 -2.26 1.026 -122.70 1.020 118.01 MAG/ANG
-LD: .00 .00 .00 .00 .00 .00 kW/kVR
kVll 24.900 CAP: .00 .00 .00 kW/kVR

FROM NODE RG10: 48.47 -14.73 40.04 -128.69 38.17 116.23 AMP/DG
<850 > LOSS= .017: (.008) (.005) (.005) kW
TO NODE 816: 48.47 -14.73 40.04 -128.69 38.17 116.23 AMP/DG
<816 > LOSS= .538: (.254) (.145) (.139) kW

NODE: 816 VOLTS: 1.017 -2.26 1.025 -122.71 1.020 118.01 MAG/ANG
-LD: .00 .00 .00 .00 .00 .00 kW/kVR
kVll 24.900 CAP: .00 .00 .00 kW/kVR

FROM NODE 850: 48.47 -14.74 40.04 -128.70 38.17 116.23 AMP/DG
<816 > LOSS= .538: (.254) (.145) (.139) kW
TO NODE 818: 13.02 -26.69 AMP/DG
<818 > LOSS= .154: (.154) kW
TO NODE 824: 35.83 -10.42 40.04 -128.70 38.17 116.23 AMP/DG
<824 > LOSS= 14.181: (4.312) (5.444) (4.425) kW

NODE: 818 VOLTS: 1.016 -2.27 MAG/ANG
-LD: .00 .00 kW/kVR
kVll 24.900 CAP: .00 kW/kVR

FROM NODE 816: 13.03 -26.77 AMP/DG
<818 > LOSS= .154: (.154) kW
TO NODE 820: 13.03 -26.77 AMP/DG
<820 > LOSS= 3.614: (3.614) kW

NODE: 820 VOLTS: .993 -2.32 MAG/ANG
-LD: .00 .00 kW/kVR
kVll 24.900 CAP: .00 kW/kVR

FROM NODE 818: 10.62 -28.98 AMP/DG
<820 > LOSS= 3.614: (3.614) kW
TO NODE 822: 10.62 -28.98 AMP/DG
<822 > LOSS= .413: (.413) kW
<table>
<thead>
<tr>
<th>NODE</th>
<th>VOLTS</th>
<th>MAG/ANG</th>
<th>kW/kVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODE 822</td>
<td>.990</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>kVll</td>
<td>24.900</td>
<td></td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 820</td>
<td>.00</td>
<td></td>
<td>AMP/DG</td>
</tr>
<tr>
<td><822 > LOSS= .413:</td>
<td>(.413)</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>NODE 824</td>
<td>1.008</td>
<td>2.37 122.94 122.94 117.76</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>kVll</td>
<td>24.900</td>
<td></td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 816</td>
<td>35.87</td>
<td>10.70 39.82 38.05 116.25</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><824 > LOSS= 14.181:</td>
<td>(4.312)</td>
<td>(5.444)</td>
<td>(4.425)</td>
</tr>
<tr>
<td>TO NODE 826</td>
<td>.00</td>
<td></td>
<td>AMP/DG</td>
</tr>
<tr>
<td><826 > LOSS= .008:</td>
<td>(.008)</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>TO NODE 828</td>
<td>35.87 10.70 36.93 38.05 116.25</td>
<td>AMP/DG</td>
<td></td>
</tr>
<tr>
<td><828 > LOSS= 1.108:</td>
<td>(.361)</td>
<td>(.393)</td>
<td>(.354)</td>
</tr>
<tr>
<td>NODE 826</td>
<td>1.016</td>
<td>-122.94</td>
<td></td>
</tr>
<tr>
<td>kVll</td>
<td>24.900</td>
<td></td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 824</td>
<td>.00</td>
<td></td>
<td>AMP/DG</td>
</tr>
<tr>
<td><826 > LOSS= .008:</td>
<td>(.008)</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>NODE 828</td>
<td>1.007</td>
<td>-2.38 122.94 122.94 117.75</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>kVll</td>
<td>24.900</td>
<td></td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 824</td>
<td>35.87 10.72 36.93 127.41 37.77 116.42</td>
<td>AMP/DG</td>
<td></td>
</tr>
<tr>
<td><828 > LOSS= 1.108:</td>
<td>(.361)</td>
<td>(.393)</td>
<td>(.354)</td>
</tr>
<tr>
<td>TO NODE 830</td>
<td>35.87 10.72 36.93 127.41 37.77 116.42</td>
<td>AMP/DG</td>
<td></td>
</tr>
<tr>
<td><830 > LOSS= 26.587:</td>
<td>(8.443)</td>
<td>(9.214)</td>
<td>(8.930)</td>
</tr>
<tr>
<td>NODE 830</td>
<td>.989</td>
<td>2.63 123.39 117.25</td>
<td>kW/kVR</td>
</tr>
<tr>
<td>D-LD</td>
<td>9.95</td>
<td>4.98 9.86 4.93 24.55 9.82</td>
<td>kW</td>
</tr>
<tr>
<td>kVll</td>
<td>24.900</td>
<td></td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 828</td>
<td>35.43 11.06 36.91 127.92 37.79 115.96</td>
<td>AMP/DG</td>
<td></td>
</tr>
<tr>
<td><830 > LOSS= 26.587:</td>
<td>(8.443)</td>
<td>(9.214)</td>
<td>(8.930)</td>
</tr>
<tr>
<td>Node</td>
<td>From/To</td>
<td>Voltage</td>
<td>Current</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>854</td>
<td>TO</td>
<td>34.22</td>
<td>-9.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.99</td>
<td>36.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.49</td>
<td>116.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.989</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.995</td>
<td>123.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117.24</td>
<td>MAG/ANG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.998</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.995</td>
<td>123.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117.24</td>
<td>MAG/ANG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.998</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.995</td>
<td>123.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117.24</td>
<td>MAG/ANG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.998</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.995</td>
<td>123.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117.24</td>
<td>MAG/ANG</td>
</tr>
<tr>
<td>830</td>
<td>TO</td>
<td>34.35</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9.99</td>
<td>36.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.49</td>
<td>116.25</td>
</tr>
<tr>
<td>852</td>
<td>TO</td>
<td>44.798</td>
<td>13.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.778</td>
<td>15.023</td>
</tr>
<tr>
<td>856</td>
<td>TO</td>
<td>.31</td>
<td>98.70</td>
</tr>
<tr>
<td></td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.19</td>
<td>127.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>852</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.999</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123.40</td>
<td>.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>856</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.19</td>
<td>127.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>852</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.999</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123.40</td>
<td>.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>856</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.19</td>
<td>127.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>852</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.999</td>
<td>-2.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123.40</td>
<td>.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>856</td>
<td>NODE</td>
<td>854</td>
<td>VOLTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.19</td>
<td>127.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116.26</td>
<td>AMP/DG</td>
</tr>
<tr>
<td>NODE: 858</td>
<td>VOLTS: 1.034</td>
<td>-3.17</td>
<td>1.032</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>-LD:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>kVII</td>
<td>CAP:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 832</td>
<td>..........</td>
<td>20.86</td>
<td>.86</td>
</tr>
<tr>
<td><858 > LOSS=</td>
<td>9.625:</td>
<td>(3.196)</td>
<td>(3.241)</td>
</tr>
<tr>
<td>TO NODE 834</td>
<td>..........</td>
<td>20.73</td>
<td>1.01</td>
</tr>
<tr>
<td><834 > LOSS=</td>
<td>2.467:</td>
<td>(0.643)</td>
<td>(0.997)</td>
</tr>
<tr>
<td>TO NODE 864</td>
<td>..........</td>
<td>0.14</td>
<td>-22.82</td>
</tr>
<tr>
<td><864 > LOSS=</td>
<td>0.000:</td>
<td>(0.000) kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-LD:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>kVII</td>
<td>CAP:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 858</td>
<td>..........</td>
<td>20.29</td>
<td>2.18</td>
</tr>
<tr>
<td><834 > LOSS=</td>
<td>2.978:</td>
<td>(0.717)</td>
<td>(1.145)</td>
</tr>
<tr>
<td>TO NODE 842</td>
<td>..........</td>
<td>14.75</td>
<td>34.68</td>
</tr>
<tr>
<td><842 > LOSS=</td>
<td>0.064:</td>
<td>(0.015)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>TO NODE 860</td>
<td>..........</td>
<td>11.16</td>
<td>-43.05</td>
</tr>
<tr>
<td><860 > LOSS=</td>
<td>0.141:</td>
<td>(0.021)</td>
<td>(0.104)</td>
</tr>
<tr>
<td></td>
<td>-LD:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>kVII</td>
<td>CAP:</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 834</td>
<td>..........</td>
<td>14.74</td>
<td>34.67</td>
</tr>
<tr>
<td><842 > LOSS=</td>
<td>0.064:</td>
<td>(0.015)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>TO NODE 844</td>
<td>..........</td>
<td>14.74</td>
<td>34.67</td>
</tr>
<tr>
<td><844 > LOSS=</td>
<td>0.306:</td>
<td>(0.068)</td>
<td>(0.156)</td>
</tr>
<tr>
<td>NODE: 844</td>
<td>VOLTS: 1.031</td>
<td>-3.27</td>
<td>1.029</td>
</tr>
<tr>
<td></td>
<td>Y-LD:</td>
<td>143.41</td>
<td>111.54</td>
</tr>
<tr>
<td>kVII</td>
<td>Y CAP:</td>
<td>106.23</td>
<td>105.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM NODE 842</td>
<td>..........</td>
<td>14.47</td>
<td>37.12</td>
</tr>
<tr>
<td><844 > LOSS=</td>
<td>0.306:</td>
<td>(0.068)</td>
<td>(0.156)</td>
</tr>
<tr>
<td><846 > LOSS=</td>
<td>0.323:</td>
<td>(0.043)</td>
<td>(0.212)</td>
</tr>
<tr>
<td>Node</td>
<td>Voltage</td>
<td>Phase A</td>
<td>Phase B</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>846</td>
<td>1.031</td>
<td>-3.32</td>
<td>-124.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM 844</td>
<td>9.76</td>
<td>78.80</td>
<td>9.40</td>
</tr>
<tr>
<td><846 > LOSS=</td>
<td>.323</td>
<td>(.043)</td>
<td>(.212)</td>
</tr>
<tr>
<td>TO 848</td>
<td>9.76</td>
<td>78.80</td>
<td>9.40</td>
</tr>
<tr>
<td><848 > LOSS=</td>
<td>.048</td>
<td>(.007)</td>
<td>(.031)</td>
</tr>
<tr>
<td>848</td>
<td>1.031</td>
<td>-3.32</td>
<td>-124.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM 846</td>
<td>9.76</td>
<td>78.79</td>
<td>9.77</td>
</tr>
<tr>
<td><848 > LOSS=</td>
<td>.048</td>
<td>(.007)</td>
<td>(.031)</td>
</tr>
<tr>
<td>860</td>
<td>1.030</td>
<td>-3.24</td>
<td>-124.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM 834</td>
<td>5.87</td>
<td>-33.62</td>
<td>7.68</td>
</tr>
<tr>
<td><860 > LOSS=</td>
<td>.141</td>
<td>(.021)</td>
<td>(.104)</td>
</tr>
<tr>
<td>TO 836</td>
<td>4.16</td>
<td>-30.19</td>
<td>5.96</td>
</tr>
<tr>
<td><836 > LOSS=</td>
<td>.039</td>
<td>(-.035)</td>
<td>(.103)</td>
</tr>
<tr>
<td>836</td>
<td>1.030</td>
<td>-3.23</td>
<td>-124.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FROM 834</td>
<td>1.49</td>
<td>-19.83</td>
<td>4.42</td>
</tr>
<tr>
<td><836 > LOSS=</td>
<td>.039</td>
<td>(-.035)</td>
<td>(.103)</td>
</tr>
<tr>
<td>TO 840</td>
<td>1.50</td>
<td>-20.01</td>
<td>2.33</td>
</tr>
<tr>
<td><840 > LOSS=</td>
<td>.002</td>
<td>(-.014)</td>
<td>(.026)</td>
</tr>
<tr>
<td>TO 862</td>
<td>.00</td>
<td>.00</td>
<td>2.09</td>
</tr>
<tr>
<td><862 > LOSS=</td>
<td>.000</td>
<td>(-.005)</td>
<td>(.009)</td>
</tr>
<tr>
<td>840</td>
<td>1.030</td>
<td>-3.23</td>
<td>-124.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

89
<table>
<thead>
<tr>
<th>Node</th>
<th>VOLTS</th>
<th>MAG/ANG</th>
<th>LD</th>
<th>kW/kVR</th>
<th>CAP</th>
<th>kW/kVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>836</td>
<td>1.030</td>
<td>124.39</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>838</td>
<td>1.034</td>
<td>125.73</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>858</td>
<td>1.000</td>
<td>125.73</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>888</td>
<td>1.000</td>
<td>125.73</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>XF10</td>
<td>4.160</td>
<td>114.82</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Loss Calculation

- from Node 836 to Node 838:
 - LOSS = 0.004 kW
- from Node 838 to Node 864:
 - LOSS = 0.004 kW
- from Node 864 to Node 888:
 - LOSS = 0.004 kW
- from Node 888 to Node XF10:
 - LOSS = 0.004 kW
- from Node XF10 to Node 832:
 - LOSS = 9.625 kW
- from Node 832 to Node 888:
 - LOSS = 0.004 kW
- from Node 888 to Node XF10:
 - LOSS = 0.004 kW

Current Calculation

- from Node 836:
 - AMP/DG = 70.04 A
- from Node 838:
 - AMP/DG = 70.04 A
- from Node 858:
 - AMP/DG = 70.04 A
- from Node 888:
 - AMP/DG = 70.04 A
- from Node XF10:
 - AMP/DG = 70.04 A
<table>
<thead>
<tr>
<th>TO NODE 890</th>
<th>VOLTS:</th>
<th>MAG/ANG</th>
<th>kW/kVR</th>
<th>CAP:</th>
</tr>
</thead>
<tbody>
<tr>
<td><890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE: 890</td>
<td>.917</td>
<td>-5.19</td>
<td>.924</td>
<td>126.78</td>
</tr>
<tr>
<td>D-LD:</td>
<td>139.11</td>
<td>69.55</td>
<td>137.56</td>
<td>68.78</td>
</tr>
<tr>
<td>kvII</td>
<td>4.160</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>FROM NODE 888</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM NODE 888</th>
<th>VOLTS:</th>
<th>MAG/ANG</th>
<th>kW/kVR</th>
<th>CAP:</th>
</tr>
</thead>
<tbody>
<tr>
<td><890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODE: 888</td>
<td>.998</td>
<td>-123.41</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>kvII</td>
<td>24.900</td>
<td>.00</td>
<td>.00</td>
<td>kVR</td>
</tr>
<tr>
<td>FROM NODE 854</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>AMP/DG</td>
</tr>
<tr>
<td><856</td>
<td>.001</td>
<td></td>
<td>(.001)</td>
<td>kW</td>
</tr>
</tbody>
</table>

91
Appendix B: PMU Data Generating Code

B.1 Generate scenarios

Because the model was built on MATLAB, the PMU data generating coding part was also wrote on MATLAB. The shown code is for 2019b version, and annotated some codes for other versions that have been changed.

```matlab
% 1) Load model============================================
model = 'IEEE_34_node_2019b_scenarios';
load_system(model);

power_34NodeTestFeeder_loads_init
power_34NodeTestFeeder_init

% 2) Set up the sweep parameters===========================
S1 = [0,0,0,0,0];
S2 = [1,0,0,0,0];
S3 = [1,1,0,0,0];
S4 = [1,0,1,0,0];
S5 = [1,0,1,0,1];
S6 = [1,0,1,1,0];
S7 = [1,0,1,1,1];
S8 = [1,1,1,0,0];
S9 = [1,1,1,0,1];
S10 = [1,1,1,1,0];
S11 = [1,1,1,1,1];

Load1 = [Pa_824_828,Pp_824_828,Pn_824_828];
Load2 = [Pa_820_822,Pp_820_822,Pn_820_822];
Load3 = [Pa_858_834,Pp_858_834,Pn_858_834];
Load4 = [Pa_844,Pp_844,Pn_844];
Load5 = [Pa_840,Pp_840,Pn_840];

L1 = Load1;
L2 = Load2;
L3 = Load3;
L4 = Load4;
```
L5 = Load5;

% 3) Generate loads data for 9 scenarios===================
current_path=pwd; % read path
T=datestr(now, 'mm-dd-yyyy-HH-MM'); % read current time

% For Scenario 1 (Topology 3)
SW=S3;
m=3;
n=1;
folder_name = ['Topology ',num2str(m)];
Dirocry = [current_path,'\DataFolder\', 'DataGeneratedAt—-',T,'\',folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,40)
 for b=linspace(-0.05,0.05,40)
 Load = [L1 L2 L3 L4 L5];
 Load=[[1+a]*Load(1:9) (1+b)*Load(10:12) Load(13:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
end
m=m+1;

% For Scenario 2 (Topology 4)
SW=S4;
n=1;
folder_name = ['Topology ',num2str(m)];
Dirocry = [current_path,'\DataFolder\', 'DataGeneratedAt—-',T,'\',folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,13)
 for b=linspace(-0.05,0.05,13)
 for c=linspace(-0.05,0.05,13)
 Load = [L1 L2 L3 L4 L5];
 Load=[[1+a]*Load(1:9) Load(10:12) (1+b)*Load(13:21) Load(22:30) (1+c)*Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
end
m=m+1;
% For Scenario 3 (Topology 5)
SW=S5;
n=1;
folder_name = ['Topology ', num2str(m)];
Dirocry = [current_path, '\DataFolder\', 'DataGeneratedAt---', T, '\', folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,13)
 for b=linspace(-0.05,0.05,13)
 for c=linspace(-0.05,0.05,13)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) Load(10:12) (1+b)*Load(13:21) Load(22:30) (1+c)*Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
end
m=m+1;

% For Scenario 4 (Topology 6)
SW=S6;
n=1;
folder_name = ['Topology ', num2str(m)];
Dirocry = [current_path, '\DataFolder\', 'DataGeneratedAt---', T, '\', folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,7)
 for b=linspace(-0.05,0.05,7)
 for c=linspace(-0.05,0.05,7)
 for d=linspace(-0.05,0.05,7)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) Load(10:12) (1+b)*Load(13:21) (1+c)*Load(22:30) (1+d)*Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
 end
end
m=m+1:
% For Scenario 5 (Topology 7)
SW=S7;
n=1;
folder_name = ['Topology', num2str(m)];
Diroryc = [current_path, '\DataFolder\', 'DataGeneratedAt', 'T', '\', folder_name];
mkdir(Diroryc);
for a=linspace(-0.05,0.05,7)
 for b=linspace(-0.05,0.05,7)
 for c=linspace(-0.05,0.05,7)
 for d=linspace(-0.05,0.05,7)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) (1+b)*Load(10:12) (1+c)*Load(13:21) (1+d)*Load(22:30) (1+d)*Load(31:end)];
 save_data(Load,SW,n,Diroryc);
 n=n+1;
 end
 end
 end
end
m=m+1;

% For Scenario 6 (Topology 8)
SW=S8;
n=1;
folder_name = ['Topology', num2str(m)];
Diroryc = [current_path, '\DataFolder\', 'DataGeneratedAt', 'T', '\', folder_name];
mkdir(Diroryc);
for a=linspace(-0.05,0.05,7)
 for b=linspace(-0.05,0.05,7)
 for c=linspace(-0.05,0.05,7)
 for d=linspace(-0.05,0.05,7)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) (1+b)*Load(10:12) (1+c)*Load(13:21) Load(22:30) (1+d)*Load(31:end)];
 save_data(Load,SW,n,Diroryc);
 n=n+1;
 end
 end
 end
end
m=m+1:
% For Scenario 7 (Topology 9)
SW=S9;
n=1;
folder_name = ['Topology', num2str(m)];
Dirocry = [current_path, '\DataFolder\', 'DataGeneratedAt--', T, '\', folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,7)
 for b=linspace(-0.05,0.05,7)
 for c=linspace(-0.05,0.05,7)
 for d=linspace(-0.05,0.05,7)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) (1+b)*Load(10:12) (1+c)*Load(13:21) Load(22:30) (1+d)
 *Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
 end
end
m=m+1;

% For Scenario 8 (Topology 10)
SW=S10;
n=1;
folder_name = ['Topology', num2str(m)];
Dirocry = [current_path, '\DataFolder\', 'DataGeneratedAt--', T, '\', folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,5)
 for b=linspace(-0.05,0.05,5)
 for c=linspace(-0.05,0.05,5)
 for d=linspace(-0.05,0.05,5)
 for e=linspace(-0.05,0.05,5)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) (1+b)*Load(10:12) (1+c)*Load(13:21) (1+d)*Load
 (22:30) (1+e)*Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
 end
 end
end
end
end
m=m+1;

% For Scenario 9 (Topology 11)
SW=S11;
n=1;
folder_name = ['Topology ',num2str(m)];
Dirocry = [current_path,'\DataFolder\', 'DataGeneratedAt--',T,'\',folder_name];
mkdir(Dirocry);
for a=linspace(-0.05,0.05,5)
 for b=linspace(-0.05,0.05,5)
 for c=linspace(-0.05,0.05,5)
 for d=linspace(-0.05,0.05,5)
 for e=linspace(-0.05,0.05,5)
 Load = [L1 L2 L3 L4 L5];
 Load=[(1+a)*Load(1:9) (1+b)*Load(10:12) (1+c)*Load(13:21) (1+d)*Load (22:30) (1+e)*Load(31:end)];
 save_data(Load,SW,n,Dirocry);
 n=n+1;
 end
 end
 end
 end
end
end

The "save_data" function is written as:

function save_data(Load,SW,n,Dirocry)
load1=Load(1,1:9);
load2=Load(1,10:12);
load3=Load(1,13:21);
load4=Load(1,22:30);
load5=Load(1,31:39);
result=table(SW,load1,load2,load3,load4,load5);
file_name = [Dirocry,'\.num2str(n)\.csv'];
writetable(result, file_name);
end

97
B.2 Generate PMU Data

Since the data corresponding to different percentages of loads have been generated under 9 topologies with different switch status scenarios, the PMU data could be generated with the MATLAB Simulink toolbox. Here, we used an approach which is a parallel simulation, that could save 80% time for running the entire process.

It should be noted that some functions would be affected by different versions of MATLAB, such as "readmatrix" and "writematrix" function could only be used in the newer versions of MATLAB 2019a; for previous versions, they should be replaced by "csvread" (or "dlmread") and "csvwrite" if the data need to be read from .csv file and save in .csv file. In addition, in MATLAB 2020a and Linux MATLAB, the "parsim" calculation should be defined detailed into each core with "parfevalOnAll" function.

% Run Parallel Simulations=================================
simu_number=5; % Set the number for one time parallel simulation
folder_name=[current_path, '\DataFolder\'];

for topology=3:11
 list=dir(fullfile(folder_name,'\Topology\',num2str(topology), '\', '*\.csv'));
 len=length(list);
 Dirocy = fullfile(folder_name,'\PMUresults\','\Topology\',num2str(topology), '\');
 mkdir(Dirocry);
 counter=1;
 num=1;

 for loop=1:(len/simu_number) % 1st running
 clear simIn
 for idx = 1:simu_number
 filename(fullfile(folder_name,'\Topology\',num2str(topology), '\', num2str(counter), '.csv'));
 SW=readmatrix(filename, 'Range', 'A2:E2'); % After 2019a
 load=readmatrix(filename, 'Range', 'F2:AR2');
 % SW=csvread(filename, 1, 0, ['A2..E2']); % dlmread
% load = csvread(filename, 1, 0, ['F2..AR2']);
% load = load(2, 2:40);

% Switch
SW850_816 = SW(1, 1);
SW818_820 = SW(1, 2);
SW832_858 = SW(1, 3);
SW834_842 = SW(1, 4);
SW836_862 = SW(1, 5);

% Load 1
Pa_824_828 = table2array(table([load(1, 1) load(1, 2) load(1, 3)]));
Pp_824_828 = table2array(table([load(1, 4) load(1, 5) load(1, 6)]));
Pn_824_828 = table2array(table([load(1, 7) load(1, 8) load(1, 9)]));

% Load 2
Pa_820_822 = table2array(table([load(1, 10)]));
Pp_820_822 = table2array(table([load(1, 11)]));
Pn_820_822 = table2array(table([load(1, 12)]));

% Load 3
Pa_858_834 = table2array(table([load(1, 13) load(1, 14) load(1, 15)]));
Pp_858_834 = table2array(table([load(1, 16) load(1, 17) load(1, 18)]));
Pn_858_834 = table2array(table([load(1, 19) load(1, 20) load(1, 21)]));

% Load 4
Pa_844 = table2array(table([load(1, 22) load(1, 23) load(1, 24)]));
Pp_844 = table2array(table([load(1, 25) load(1, 26) load(1, 27)]));
Pn_844 = table2array(table([load(1, 28) load(1, 29) load(1, 30)]));

% Load 5
Pa_840 = table2array(table([load(1, 31) load(1, 32) load(1, 33)]));
Pp_840 = table2array(table([load(1, 34) load(1, 35) load(1, 36)]));
Pn_840 = table2array(table([load(1, 37) load(1, 38) load(1, 39)]));

% load(idx)
simIn(idx) = Simulink.SimulationInput(model);
simIn(idx) = simIn(idx).setVariable('SimulationMode', 'Accelerator');

simIn(idx) = simIn(idx).setVariable('SW850_816', SW850_816);
simIn(idx) = simIn(idx).setVariable('SW818_820', SW818_820);
simIn(idx) = simIn(idx).setVariable('SW832_858', SW832_858);
simIn(idx) = simIn(idx).setVariable('SW834_842', SW834_842);
simIn(idx) = simIn(idx).setVariable('SW836_862', SW836_862);

simIn(idx) = simIn(idx).setVariable('Pa_824_828', Pa_824_828);
simIn(idx) = simIn(idx).setVariable('Pp_824_828', Pp_824_828);
simIn(idx) = simIn(idx).setVariable('Pn_824_828', Pn_824_828);

simIn(idx) = simIn(idx).setVariable('Pa_820_822', Pa_820_822);
simIn(idx) = simIn(idx).setVariable('Pp_820_822', Pp_820_822);
simIn(idx) = simIn(idx).setVariable('Pn_820_822', Pn_820_822);

simIn(idx) = simIn(idx).setVariable('Pa_858_834', Pa_858_834);
simIn(idx) = simIn(idx).setVariable('Pp_858_834', Pp_858_834);
simIn(idx) = simIn(idx).setVariable('Pn_858_834', Pn_858_834);

simIn(idx) = simIn(idx).setVariable('Pa_844', Pa_844);
simIn(idx) = simIn(idx).setVariable('Pp_844', Pp_844);
simIn(idx) = simIn(idx).setVariable('Pn_844', Pn_844);

simIn(idx) = simIn(idx).setVariable('Pa_840', Pa_840);
simIn(idx) = simIn(idx).setVariable('Pp_840', Pp_840);
simIn(idx) = simIn(idx).setVariable('Pn_840', Pn_840);

counter = counter + 1;
end

simOut = parsim(simIn, 'ShowSimulationManager', 'off');

for round=1:simu_number
 PMU802=[simOut(round).logsout{34}.Values.Data(1,:); simOut(round).logsout{1}.Values.Data(1,:)];
 PMU806=[simOut(round).logsout{35}.Values.Data(1,:); simOut(round).logsout{2}.Values.Data(1,:)];
 PMU808=[simOut(round).logsout{36}.Values.Data(1,:); simOut(round).logsout{3}.Values.Data(1,:)];
 PMU812=[simOut(round).logsout{38}.Values.Data(1,:); simOut(round).logsout{5}.Values.Data(1,:)];
end
PMU850 = simOut(round).logsout{57}.Values.Data(1,:);
PMU816 = simOut(round).logsout{40}.Values.Data(1,:);
PMU818 = simOut(round).logsout{41}.Values.Data(1,:);
PMU820 = simOut(round).logsout{42}.Values.Data(1,:);
PMU822 = simOut(round).logsout{43}.Values.Data(1,:);
PMU824 = simOut(round).logsout{44}.Values.Data(1,:);
PMU826 = simOut(round).logsout{45}.Values.Data(1,:);
PMU828 = simOut(round).logsout{46}.Values.Data(1,:);
PMU830 = simOut(round).logsout{47}.Values.Data(1,:);
PMU854 = simOut(round).logsout{59}.Values.Data(1,:);
PMU856 = simOut(round).logsout{60}.Values.Data(1,:);
PMU852 = simOut(round).logsout{58}.Values.Data(1,:);
PMU832 = simOut(round).logsout{48}.Values.Data(1,:);
PMU888 = simOut(round).logsout{65}.Values.Data(1,:);
PMU890 = simOut(round).logsout{66}.Values.Data(1,:);
PMU858 = simOut(round).logsout{61}.Values.Data(1,:);
PMU864 = simOut(round).logsout{64}.Values.Data(1,:);
PMU834 = simOut(round).logsout{49}.Values.Data(1,:);
PMU842 = simOut(round).logsout{53}.Values.Data(1,:);
PMU844 = simOut(round).logsout{54}.Values.Data(1,:);
PMU846=[simOut(round).logsout{55}.Values.Data(1,:); simOut(round).logsout{22}.Values.Data(1,:)] %27
PMU848=[simOut(round).logsout{56}.Values.Data(1,:); simOut(round).logsout{23}.Values.Data(1,:)] %28
PMU836=[simOut(round).logsout{50}.Values.Data(1,:); simOut(round).logsout{17}.Values.Data(1,:)] %30
PMU840=[simOut(round).logsout{52}.Values.Data(1,:); simOut(round).logsout{19}.Values.Data(1,:)] %31
PMU862=[simOut(round).logsout{63}.Values.Data(1,:); simOut(round).logsout{30}.Values.Data(1,:)] %32
PMU838=[simOut(round).logsout{51}.Values.Data(1,:); simOut(round).logsout{18}.Values.Data(1,:)] %33
PMU=[PMU802;PMU806;PMU808;PMU810;PMU812;PMU814;PMU850;PMU816;PMU818;PMU820;
PMU822;PMU824;PMU826;PMU828;PMU830;PMU834;PMU836;PMU854;PMU856;PMU858;PMU860;PMU862;PMU864;PMU880;
PMU890;PMU892];
file_name=[Dirocry,’\’num2str(num)\.csv’];
writematrix(PMU,file_name);
% After 2019a
%csvwrite (file_name ,PMU) ;
num=num+1;
end
end
if rem(len,simu_number)~=0
% if the remainder is not zero, run a 2nd time
 clear simIn
 for idx=1:(len-counter+1) % 2nd running
 filename=[folder_name,T,’\’\Topology’\’,num2str(topology)\’,\’\’,num2str(counter)\’,\’\.csv’];
 SW=readmatrix(filename,’Range’,’A2:E2’);
 load=readmatrix(filename,’Range’,’F2:AR2’);
 %SW=csvread(filename,1,0,[’A2..E2’]); %dlmread
 %load=csvread(filename,1,0,[’F2..AR2’]);
 %load=load(2,2:40);
 switch
 case SW850_816 = SW(1,1);
 case SW818_820 = SW(1,2);
 case SW832_858 = SW(1,3);
SW834_842 = SW(1,4);
SW836_862 = SW(1,5);

% Load 1
Pa_824_828 = table2array(table([load(1,1) load(1,2) load(1,3)]));
Pp_824_828 = table2array(table([load(1,4) load(1,5) load(1,6)]));
Pn_824_828 = table2array(table([load(1,7) load(1,8) load(1,9)]));

% Load 2
Pa_820_822 = table2array(table([load(1,10)]));
Pp_820_822 = table2array(table([load(1,11)]));
Pn_820_822 = table2array(table([load(1,12)]));

% Load 3
Pa_858_834 = table2array(table([load(1,13) load(1,14) load(1,15)]));
Pp_858_834 = table2array(table([load(1,16) load(1,17) load(1,18)]));
Pn_858_834 = table2array(table([load(1,19) load(1,20) load(1,21)]));

% Load 4
Pa_844 = table2array(table([load(1,22) load(1,23) load(1,24)]));
Pp_844 = table2array(table([load(1,25) load(1,26) load(1,27)]));
Pn_844 = table2array(table([load(1,28) load(1,29) load(1,30)]));

% Load 5
Pa_840 = table2array(table([load(1,31) load(1,32) load(1,33)]));
Pp_840 = table2array(table([load(1,34) load(1,35) load(1,36)]));
Pn_840 = table2array(table([load(1,37) load(1,38) load(1,39)]));

simIn(idx) = Simulink.SimulationInput(model);
simIn(idx) = simIn(idx).setVariable('SimulationMode' , 'Accelerator');
simIn(idx) = simIn(idx).setVariable('SW850_816' , SW850_816);
simIn(idx) = simIn(idx).setVariable('SW818_820' , SW818_820);
simIn(idx) = simIn(idx).setVariable('SW832_858' , SW832_858);
simIn(idx) = simIn(idx).setVariable('SW834_842' , SW834_842);
simIn(idx) = simIn(idx).setVariable('SW836_862' , SW836_862);
simIn(idx) = simIn(idx).setVariable('Pa_824_828' , Pa_824_828);
simIn(idx) = simIn(idx).setVariable('Pp_824_828' , Pp_824_828);
simIn(idx) = simIn(idx).setVariable('Pn_824_828' , Pn_824_828);
simIn(idx) = simIn(idx).setVariable('Pa_820_822', Pa_820_822);
simIn(idx) = simIn(idx).setVariable('Pp_820_822', Pp_820_822);
simIn(idx) = simIn(idx).setVariable('Pn_820_822', Pn_820_822);

simIn(idx) = simIn(idx).setVariable('Pa_858_834', Pa_858_834);
simIn(idx) = simIn(idx).setVariable('Pp_858_834', Pp_858_834);
simIn(idx) = simIn(idx).setVariable('Pn_858_834', Pn_858_834);

simIn(idx) = simIn(idx).setVariable('Pa_844', Pa_844);
simIn(idx) = simIn(idx).setVariable('Pp_844', Pp_844);
simIn(idx) = simIn(idx).setVariable('Pn_844', Pn_844);

simIn(idx) = simIn(idx).setVariable('Pa_840', Pa_840);
simIn(idx) = simIn(idx).setVariable('Pp_840', Pp_840);
simIn(idx) = simIn(idx).setVariable('Pn_840', Pn_840);

counter=counter+1;
end

simOut = parsim(simIn, 'ShowSimulationManager', 'off');

for round=1:(len-num+1)
 PMU802=[simOut(round).logsout{34}.Values.Data(1,:) simOut(round).logsout{1}.Values.Data(1,:)];
 PMU806=[simOut(round).logsout{36}.Values.Data(1,:) simOut(round).logsout{3}.Values.Data(1,:)];
 PMU810=[simOut(round).logsout{38}.Values.Data(1,:) simOut(round).logsout{5}.Values.Data(1,:)];
 PMU814=[simOut(round).logsout{40}.Values.Data(1,:) simOut(round).logsout{24}.Values.Data(1,:)];
 PMU816=[simOut(round).logsout{41}.Values.Data(1,:) simOut(round).logsout{24}.Values.Data(1,:)];
 PMU818=[simOut(round).logsout{42}.Values.Data(1,:) simOut(round).logsout{9}.Values.Data(1,:)];
end
PMU822 = [simOut(round).logsout{43}.Values.Data(1,:) simOut(round).logsout{10}.Values.Data(1,:)]

PMU824 = [simOut(round).logsout{44}.Values.Data(1,:) simOut(round).logsout{11}.Values.Data(1,:)]

PMU826 = [simOut(round).logsout{45}.Values.Data(1,:) simOut(round).logsout{12}.Values.Data(1,:)]

PMU828 = [simOut(round).logsout{46}.Values.Data(1,:) simOut(round).logsout{13}.Values.Data(1,:)]

PMU854 = [simOut(round).logsout{59}.Values.Data(1,:) simOut(round).logsout{26}.Values.Data(1,:)]

PMU856 = [simOut(round).logsout{60}.Values.Data(1,:) simOut(round).logsout{27}.Values.Data(1,:)]

PMU832 = [simOut(round).logsout{48}.Values.Data(1,:) simOut(round).logsout{15}.Values.Data(1,:)]

PMU888 = [simOut(round).logsout{65}.Values.Data(1,:) simOut(round).logsout{32}.Values.Data(1,:)]

PMU858 = [simOut(round).logsout{61}.Values.Data(1,:) simOut(round).logsout{28}.Values.Data(1,:)]

PMU864 = [simOut(round).logsout{64}.Values.Data(1,:) simOut(round).logsout{31}.Values.Data(1,:)]

PMU834 = [simOut(round).logsout{49}.Values.Data(1,:) simOut(round).logsout{16}.Values.Data(1,:)]

PMU844 = [simOut(round).logsout{54}.Values.Data(1,:) simOut(round).logsout{21}.Values.Data(1,:)]

PMU848 = [simOut(round).logsout{56}.Values.Data(1,:) simOut(round).logsout{23}.Values.Data(1,:)]

PMU836 = [simOut(round).logsout{50}.Values.Data(1,:) simOut(round).logsout{17}.Values.Data(1,:)]
Because the voltage and current have already been converted into per unit forms when building the Simulink model, the next step is to convert the angle values measured by PMUs into "radian/\pi". So, the values would be shrunk between -1 to 1, which be suited for neural convolution. The code to generate the PMU data into per unit values is shows below:

```matlab
% Save data into one .mat file
for topology=3:11
    list=dir(fullfile(folder_name,’PMUresults’,’Topology’,num2str(topology),’*.csv’));
    len=length(list);
    for counter=1:len
        filename(fullfile(folder_name,’PMUresults\Topology’,num2str(topology),’\’,num2str(counter),’*.csv’));
        Data{topology−2,counter}=readmatrix(fullfile(folder_name,’Range’,’A1:L33’));
    end
end
save Data.mat

% Save in sorted folders
clear
```
load ('Data.mat')

for topology=3:11
 Dirocry = [folder_name, 'PMU_PUresults\', num2str(topology−2), '\'];
 mkdir(Dirocry);
 list=dir([folder_name, '\PMUresults', '\Topo', num2str(topology), '∗.csv']);
 len=length(list);
 for counter=1:len
 file_name=[Dirocry, num2str(counter), '.csv'];
 rad=Data{topology−2,counter}(:,[4,5,6,10,11,12])*pi/180;
 % Convert to radian
 rad=rad/pi;
 % let rad between −1 and 1
 voltage=Data{topology−2,counter}(:,1:3);
 current=Data{topology−2,counter}(:,7:9);
 save_data=[voltage, rad(:,[1,2,3]), current, rad(:,[4,5,6])];
 writematrix(save_data, file_name);
 end
end
Appendix C: Convolutional Neural Network Code

C.1 Sorting Data

For CNN part, the code below was ran in Pycharm which used Python language.

```python
#Sorting the data into three folders
#Copy the data into a new folder first
import os, random, shutil

def moveFile_Train(fileDir):
    pathDir = os.listdir(fileDir)
    #Read the original path of the file
    filenumber=len(pathDir)
    rate=0.8  #Proportion of extracted files
    picknumber=int(filenumber*rate) #Extract files in proportion
    sample = random.sample(pathDir, picknumber)
    #Randomly select a proportional number of files
    print (sample)
    for name in sample:
        shutil.move(fileDir+'/'+name, tarDir+'/'+name)
        #shutil.copyfile(fileDir+name, tarDir+name)
    return

def moveFile_Test(fileDir):
    pathDir = os.listdir(fileDir)
    filenumber = len(pathDir)
    rate = 0.5
    picknumber = int(filenumber * rate)
    sample = random.sample(pathDir, picknumber)
    print(sample)
    for name in sample:
        shutil.move(fileDir+'/'+name, tarDir+'/'+name)
    return

def moveFile_Val(fileDir):
    pathDir = os.listdir(fileDir)
    filenumber = len(pathDir)
```
rate = 1
picknumber = int(filenumber * rate)
sample = random.sample(pathDir, picknumber)
print(sample)
for name in sample:
 shutil.move(fileDir+'/' + name, tarDir+'/' + name)
return

if __name__ == '__main__':
 for num in range(1,10):
 path_Test = 'G:/34NODES_RUNNING/DataFolder/CNN/Test/' + str(num)
 path_Train = 'G:/34NODES_RUNNING/DataFolder/CNN/Train/' + str(num)
 path_Val = 'G:/34NODES_RUNNING/DataFolder/CNN/Val/' + str(num)
 try:
 os.mkdir(path_Train)
 os.mkdir(path_TEST)
 os.mkdir(path_Val)
 except OSError:
 print("Creation of the directory %s failed" % path_Train)
 print("Creation of the directory %s failed" % path_Test)
 print("Creation of the directory %s failed" % path_Val)
 else:
 print("Successfully created the directory %s" % path_Train)
 print("Successfully created the directory %s" % path_Test)
 print("Successfully created the directory %s" % path_Val)

 for num in range(1,10):
 fileDir = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/" + str(num) # Source file folder path
 tarDir = 'G:/34NODES_RUNNING/DataFolder/CNN/Train/' + str(num) # Move to new folder path
 moveFile_Train(fileDir) # move to Train folder

 for num in range(1,10):
 fileDir = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/" + str(num)
 tarDir = 'G:/34NODES_RUNNING/DataFolder/CNN/Test/' + str(num)
 moveFile_Test(fileDir) # move to Test folder

 for num in range(1,10):
 fileDir = "G:/34NODES_RUNNING/DataFolder/CNN/PMU_PUresults/" + str(num)
C.2 Calculate the mean and standard deviation

```python
tarDir = 'G:/34NODES_RUNNING/DataFolder/CNN/Val/' +\string(num)
moveFile_Val(fileDir)  #move to Val folder

import os
from glob import glob
import numpy as np
import pandas as pd

def mean_std(root):
    class_dir = glob(os.path.join(root, '*/'))
    for dir in class_dir:
        print(dir, os.path.isdir(dir))
    total_data = []

    for dir in class_dir:
        this_data = glob(os.path.join(dir, '*.csv'))
        total_data += this_data
    print(len(total_data))

    batch_size = 100
    num_batch = len(total_data) // batch_size

    batch_means = []
    batch_vars = []
    print('num_batch = ', num_batch)

    for i_batch in range(num_batch):
        print('processing batch', i_batch)
        batch_data = None
        start = i_batch * batch_size
        end = (i_batch + 1) * batch_size
        for file in total_data[start:end]:
            #print('processing file', file)
            df = pd.read_csv(file, header=None)
            im = df.to_numpy()  #Convert <pandas.core.frame.DataFrame> to <numpy.ndarray>
            batch_data = np.vstack((batch_data, im))
            batch_means.append(df.mean())
            batch_vars.append(df.std())
```

110
if batch_data is None:
 batch_data = im
else:
 batch_data = np.vstack((batch_data, im))
 #print(np.shape(batch_data))
 #print(np.shape(batch_data))

batch_mean0 = np.mean(batch_data)
batch_var0 = np.var(batch_data)

batch_means.append(batch_mean0)
batch_vars.append(batch_var0)

batch_means = np.stack(batch_means, axis=0)
batch_vars = np.stack(batch_vars, axis=0)

print(batch_means.shape)
print(batch_vars.shape)

mean = np.mean(batch_means, axis=0)
var = np.mean(batch_vars, axis=0) + np.var(batch_means, axis=0)

print('mean =', mean)
print('var =', var)
print('std =', np.sqrt(var))
return mean, np.sqrt(var)

C.3 Two Layer Net

import torch.nn as nn
import torch.nn.functional as F
import numpy as np

Weight initialization
def weight_init(m):
 if isinstance(m, nn.Linear):
 size = m.weight.size()
 fan_out = size[0] # number of rows
 fan_in = size[1] # number of columns
```python
variance = np.sqrt(2.0/(fan_in + fan_out))
m.weight.data.normal_(0.0, variance)

elif isinstance(m, nn.Conv2d):
    k1, k2 = m.kernel_size
    # in_c = m.in_channels
    out_c = m.out_channels
    n = k1 * k2 * out_c
    variance = np.sqrt(2.0 / n)
m.weight.data.normal_(0.0, variance)

def num_flat_features(x):
    size = x.size()[1:]
    # all dimensions except the batch dimension
    num_features = 1
    for s in size:
        num_features *= s
    return num_features

class TwoLayerConvNet(nn.Module):
    def __init__(self):
        super(TwoLayerConvNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 15, kernel_size=(5, 3), stride=(1, 3))
        self.conv_bn1 = nn.BatchNorm2d(15)
        self.conv2 = nn.Conv2d(15, 20, kernel_size=3)
        self.conv_bn2 = nn.BatchNorm2d(20)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(20 * 27 * 2, 100)
        self.fc_bn1 = nn.BatchNorm1d(100)
        self.fc2 = nn.Linear(100, 9)
        weight_init(self.fc1)
        weight_init(self.fc2)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv_bn1(self.conv1(x)), kernel_size=(1, 1)))
        # print(x.shape)
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv_bn2(self.conv2(x))), kernel_size=(1, 1)))
        # print(x.shape)
        x = x.view(-1, num_flat_features(x))
        x = F.relu(self.fc_bn1(self.fc1(x)))  # used to be F.tanh
        x = F.dropout(x, training=self.training)
```

112
C.4 Pandas Dataset Folder

Here a function is customized for the data input of the heatmap.

```python
from torchvision.datasets import DatasetFolder
import torch
import numpy as np

class PandasDatasetFolder(DatasetFolder):
    def __getitem__(self, index):
        path, target = self.samples[index]
        sample = self.loader(path, header=None)
        # sample = np.as_matrix(sample)
        sample=sample.to_numpy()
        sample=sample[np.newaxis, ...]
        # print(np.shape(sample))
        # print('Sample Type:', type(sample))
        sample = torch.from_numpy(sample)
        # print(sample)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target
```

C.5 Main Code

C.5.1 Cuda Parameters

```python
no_cuda = False
is_cuda = not no_cuda and torch.cuda.is_available()
print("is_cuda = ", is_cuda)
```
C.5.2 Load Data

data_path = 'G:\XXXXXXXXXXXXXXXXXXXXX'
data_file_names = ['Train', 'Val', 'Test']
data_sets = glob.glob(data_path)

for sub_data_path in data_sets:
 train_path = os.path.join(sub_data_path, 'Train')
 # ==== Get Mean STD ====
 print(train_path)
 mean, std = mean_std(train_path) ## Commended before get MEAN std

currentloader = pd.read_csv

for data_file in data_file_names:
 data_file_path = os.path.join(data_path, data_file)
 if os.path.isdir(data_file_path) and data_file == 'Train':
 # train_dataset = DatasetFolder(root=data_file_path, loader=pd.read_csv, extensions='csv')
 train_dataset = PandasDatasetFolder(root=data_file_path, loader=currentloader, extensions='csv')
 elif os.path.isdir(data_file_path) and data_file == 'Val':
 # val_dataset = DatasetFolder(root=data_file_path, loader=pd.read_csv, extensions='csv', transform=train_transform)
 val_dataset = PandasDatasetFolder(root=data_file_path, loader=currentloader, extensions='csv')
 elif os.path.isdir(data_file_path) and data_file == 'Test':
 # test_dataset = DatasetFolder(root=data_file_path, loader=pd.read_csv, extensions='csv', transform=train_transform)
 test_dataset = PandasDatasetFolder(root=data_file_path, loader=currentloader, extensions='csv')
 else:
 raise RuntimeError('No data files found. ')

train_loader = data_utils.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True, **kwargs)
val_loader = data_utils.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False, **kwargs)
C.5.3 Train Function

def train(epoch, print_period=100):
 model.train()
 # print(train_loader)
 for batch_idx, (data, target) in enumerate(train_loader):
 # convert data to tensor
 # data = torch.from_numpy(data.to_numpy())
 # normalize
 data -= mean
 data /= std
 # print(data.size())
 if is_cuda:
 data, target = data.cuda(), target.cuda()
 data = data.type('torch.cuda.FloatTensor')
 target = target.type('torch.cuda.LongTensor')
 else:
 data = data.type('torch.DoubleTensor')
 target = target.type('torch.LongTensor')

 # data = data[:,:,:2,:,:]
 target = target.squeeze()
 optimizer.zero_grad()
 output = model(data)
 with torch.enable_grad():
 loss = F.cross_entropy(output, target) # F.nll_loss(output, target)
 loss.backward()
 optimizer.step()

 if batch_idx % print_period == 0:
 print('Train Epoch: {} [{}/{}]	Loss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset), loss.data))
print('validation: ')
val_target_labels, val_pred_labels, val_acc = validate(model, val_loader, is_cuda=True)
return val_target_labels, val_pred_labels, val_acc

C.5.4 Model and Parameter Setting

model = TwoLayerConvNet()
model = model.float()
if is_cuda:
 model.cuda()

optimizer = optim.Adam(model.parameters(), lr=1e−4, weight_decay=0.00001)
scheduler = StepLR(optimizer, step_size=28, gamma=0.1)

num_epoch = 1
print_period = 10

best_model_file_name = type(model).__name__ + '_best_checkpoint.pickle'

C.5.5 Training Loop

best_val_acc = 0
for epoch in range(num_epoch):
 print('---')
 optimizer.zero_grad()
 val_target_labels, val_pred_labels, val_pred_acc = train(epoch, print_period=print_period)
scheduler.step()
 if val_pred_acc > best_val_acc:
 best_val_acc = val_pred_acc
 torch.save({'state_dict': model.state_dict(),
 'pred_labels': val_pred_labels,
 'target_labels': val_target_labels,
 'epoch': epoch,
 'best_val_pred_acc': val_pred_acc},
 best_model_file_name)
C.5.6 Training Loop

best_point = torch.load(best_model_file_name)
model.load_state_dict(best_point['state_dict'])

test_target_labels, test_pred_labels, test_acc = validate(model, test_loader, is_cuda=is_cuda)

print('Best validation acc:	', best_val_acc)
print('Predicted test acc:	', test_acc)

t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
exist_check_point = os.path.isfile(best_model_file_name)
if exist_check_point:
 new_check_point_name = type(model).__name__ + 'best_checkpoint' + '{:.2f}'.format(best_val_acc) + '_' + t + '.pickle'
 os.rename(best_model_file_name, new_check_point_name)