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Abstract—This paper proposes a two-stage energy manage-
ment system (EMS) for power grids with massive integration
of electric vehicles (EVs) and renewable energy resources. The
first stage economic dispatch determines the optimal operat-
ing points of charging stations and battery swapping stations
(BSS) for EVs under plug-in and battery swapping modes,
respectively. The proposed stochastic model predictive control
(SMPC) problem in this stage is characterized through a chance-
constrained optimization formulation that can effectively capture
the system and the forecast uncertainties. A distributed algo-
rithm, the alternating direction method of multipliers (ADMM),
is applied to accelerate the optimization computation through
parallel computing. The second stage is aimed in coordinating
the EV charging mechanisms to continuously follow the first-
stage solutions, i.e., the target operating points, and meeting the
EV customers’ charging demands captured via the Advanced
Metering Infrastructure (AMI). The proposed solution offers a
holistic control strategy for large-scale centralized power grids
in which the aggregated individual parameters are predictable
and the system dynamics do not vary sharply within a short
time-interval.

Index Terms—Economic dispatch, electric vehicle (EV), energy
management system (EMS), chance-constrained optimization,
stochastic model predictive control (SMPC).

NOMENCLATURE

Indices

i Index for state variables (1, . . . , n).
j Index for EV numbers.
m Index for stochastic scenarios (1, . . . , M).
k Index for time-steps (1, . . . , K).
s Index for EV groups (1, . . . , S).
t Index for time.

Parameters and Variables

α Auxiliary variable for convex approximation.
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αc, αd Charge/discharge efficiency of the battery.
ε Probability of constraint violation.
γ Penalty factor.
λ Scaled dual variable in ADMM.
�t Length of the time-step.
�PG,i Ramp rate of the generating unit i.
Bs SOC of battery swapping station.
cd Battery degradation cost per MWh.
Ci(PG,i) Operating cost function of generating unit i.
EC Forecasted energy consumption of plug-in EVs

in the next 24 hours.
Edep EV’s energy demand upon departure.
Ep Energy state of the plug-in EVs.
Eini Energy state of the plug-in EVs at the initial

time interval.
k1, k2 Current and departure time intervals for EVs

under plug-in mode.
L1, L2 Look-ahead time windows for SED and OPF,

respectively.
Lc Total energy allocated to plug-in EVs.
PG Active power of generating units.
Pnet The net generation of buses.
tdep EV departure time.
TU Auxiliary variable.
u System control variable.
uc Converted power to stored energy.
ud Converted power from BSS to electricity.
ul Allocated power for plug-in EVs sent from the

ISO to a specific utility.
umin

l , umax
l Minimum and maximum charging capacity of

plug-in EVs.
up Power allocated to plug-in EVs.
us Energy consumption of EVs by swapping the

batteries.
w System disturbance.
x System state variable.
z Common global variable in ADMM.

I. INTRODUCTION

DEMAND side management (DSM) has been employed as
an effective mechanism by the utility operators to miti-

gate the system operating costs at the peak load intervals while
best meeting the carbon emission targets [1]. In contrast with
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those DSM programs that primarily operate through mutual
interactions with the customers (by sending them the energy
price signals and seeking their response accordingly), direct
load control (DLC) mechanisms allow the utility to switch
on and off the end-use devices when certain system operat-
ing conditions unfold. In so doing, many electric utilities have
leveraged the advanced metering infrastructure (AMI) for DLC
communications [2]. With the wide deployment of the AMI
in practice, real time measurement and control of the emerg-
ing flexible loads, e.g., electric vehicles (EVs), becomes viable
system-wide [3]. This in turn calls for well-designed control
and scheduling mechanisms allowing the operator to harness
the large-scale EV demand flexibility.

In recent years, optimal charging management and schedul-
ing of EVs under both plug-in and battery swapping modes
have been extensively explored in the literature. Both glob-
ally and locally optimal charging and discharging schedules
are suggested in [4] for EVs under plug-in operating mode.
Many literature propose locally optimal charging and dis-
charging schedules to maximize the benefits of particular
stakeholders. A cyber-physical energy management system for
networked nanogrids with battery swapping stations (BSSs) is
introduced in [5]. Optimal day-ahead operation and service
scheduling of the BSS is investigated in [6]. Pricing signals
are widely utilized in decentralized charging strategies to coor-
dinate the aggregators and avoid the locally optimal solutions.
Scheduling of the plug-in EVs with co-optimized customer and
system objectives is addressed in [7] where the battery degra-
dation, customer costs, and system load profiles are taken into
account. However, the scheduling scheme presented in [7] is
centered on the electricity market price, the real-time dynamics
of which are prominently affected by the high penetration of
EVs. In response, dynamic pricing scheme and optimal charg-
ing scheduling of the BSS is studied in [8]. Efforts have also
been made in [9] to structure a dynamic charging mechanism
that is able to adjust and update the EV charging prices accord-
ing to the tracked demand portfolios. The proposed method
in [9] is to incentivize the customers to meet the charging
station demand requirements, which may not be an effective
assumption in practice considering the random behaviours of
EV customers.

New energy management systems (EMSs) are needed to
effectively capture the system uncertainties and respond to the
growing demand for additional grid-scale flexibility, especially
with the emerging trends in high proliferation (rapid increase)
of renewables and EVs in the near future. Economic dispatch
in power grids with high penetration of renewables and energy
storage systems is studied in [10], [11], where stochastic mod-
els are developed based on model predictive control (MPC) to
minimize the system operating cost over different scenarios
that best reflect the uncertainty of future model parameters.
In [12], a chance-constrained formulation is suggested for
optimal power flow (OPF) in radial distribution systems with
stochastic distributions of renewable forecasts. The chance
constraints of the stochastic MPC (SMPC) offers a holistic
approach that systematically seeks a trade-off between the con-
trol objectives and probabilistic uncertainty constraints [13].
A two-stage decision support tool for isolated microgrids with

energy storage is proposed in [14] to address the system and
parameter uncertainties. In order to effectively deal with such
large optimization problems in power grids hosting highly-
distributed energy resources (DERs) and controllable loads, a
decentralized OPF algorithm is proposed in [15], [16] rely-
ing on a dependable communication system [17]. Renewable
uncertainties are also studied in stochastic economic dispatch
(SED) problems in [18]–[20].

To date, centralized EMS architectures able to globally
optimize EV charging schedules are either applicable to dis-
tribution systems with small-scale EV penetrations or tailored
to specific EV customers with certain behaviors. EV charging
management for commercial buildings with PV generation is
studied in [21]. In [22], a chance-constrained control strategy
is proposed for EV-integrated microgrids in which each EV is
modeled as a variable making it a computationally-intensive
optimization problem with large numbers of EVs. A central-
ized power dispatch strategy considering an aggregate model
of EV fleet with certain customer behavior is approached
in [23]. Regional EV charging capacity is proposed in [24]
to evaluate their energy demand assuming a certain charging
requirement upon arrival. EV fleets are considered as station-
ary storage services in [25] to reduce the transmission system
operation cost. The related research mentioned above has one
of the following strong assumptions on customer behavior: (i)
EV customer has a certain behavior and EV demands can be
precisely forecasted, (ii) EVs are assumed to be charged upon
arriving home, (iii) the customers’ main priority is their pay-
ments. These assumptions are contrasted to the fact that most
customers require EV charging stations to charge the required
EV load demand upon the EV departure, and different classes
of EV customers have different preferences. They also fail to
precisely characterize neither the stochasticity of the customer
behavior nor the flexibility of the EV loads.

It has remained a challenge to schedule the EV charging
through a global scheduling optimization problem [4]. The
main obstacles to achieve a centralized charging strategy with
large numbers of EVs [26] at the transmission level are: (i) per-
fect knowledge of the system parameters and EV customer
driving profiles is not available and is hard to characterize;
(ii) high computation burdens; and (iii) high communication
infrastructure investment requirements. Furthermore, to our
best knowledge, the system-wide correlation of EV operations
with each other under plug-in and battery swapping modes
and their impacts on power grid have not yet been explored
in the literature. In this paper, a centralized two-stage EMS
architecture is proposed to fill the knowledge gap and to be
used in power systems with high proliferation of renewables
and EVs. We formulate the EV scheduling problem as a global
optimization problem to minimize the economic dispatch cost
at the transmission level by dispatching both generators and
EV load. Formulation of a global optimization problem allows
the model to compute the globally optimal solution contingent
on oracle forecasting. The solution of the proposed model is
sub-optimal primarily due to the applied SMPC algorithm and
limited observations of the EV driving profiles. However, the
system uncertainties are handled by the rolling-horizon con-
trol of the SMPC algorithm and a decision making mechanism
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that enables statistical estimation of the system and parameters
control via two-way communications. The results indicate that
the proposed two-stage EV scheduling framework can improve
power system performance via a nearly-optimal solution, and
at the same time, coordinates the system-level EV charging
without strong assumptions of the EV customer behaviors.
Furthermore, the existing communication system can be uti-
lized with minimum required investments. The paper’s main
contributions are summarized as follows:

1) A two-stage EMS architecture is suggested that accounts
for DER forecast uncertainties and stochastic random-
ness of the EV customer behaviors.

2) Effectively capturing both plug-in and battery swapping
charging modes, we proposed a model that can optimize
the EV charging schedules and reduce the system opera-
tion cost at the transmission level by providing a nearly-
optimal solution to the global EV charging scheduling
optimization problem.

3) The alternating direction method of multipliers
(ADMM) is effectively employed to accelerate the
computation speed of the sample-based SED problem
in a DC setting and in a central station.

The rest of the paper is organized as follows. Section II
presents the suggested 2-stage EMS architecture. Section III
introduces the proposed first-stage optimization problem and
the corresponding mathematical formulations for the SED.
Section IV presents the second-stage EV charging strategies
under both plug-in and battery swapping modes. Section V
presents the numerical case studies and simulation results.
Section VI discusses the scalability and optimality of the
proposed models, followed by the conclusions in Section VII.

II. THE PROPOSED CHANCE-CONSTRAINED EMS
ARCHITECTURE

The proposed EMS architecture is illustrated in Fig. 1. We
assume in this paper that both EV operation modes, plug-in
or battery exchange, are viable options and customers who
prefer exchanging the batteries through the BSS can subscribe
in this service. The customers who charge their EVs under
the plug-in mode and do not subscribe in the BSS service
can still swap their depleted EV batteries with a higher price.
The AMI is utilized to manage the EV energy demand by
analyzing the data from smart meters connected to EVs. The
EMS design in [14], [22] is modified to integrate the EVs and
DERs in modern power grids. The proposed control framework
is composed of two stages. The first stage is centered on a
SED optimization to determine the hour-ahead dispatch target
(�t1 = 1 h) capturing the system uncertainties. The second
stage shrinks the control horizon to 5 minutes (�t2 = 1/12 h)
and is tailored to an Optimal Power Flow (OPF) mechanism
to dispatch the available resources including the controllable
loads and storage units with respect to system dynamics and
the first-stage targets. In particular,

1) In Stage 1, the SED is solved at time t with an L1-
hour look-ahead rolling horizon based on the SMPC.
We assume L1 to be equal to 24 hours. Stochastic fore-
cast of renewable and load profiles, estimated EV energy

Fig. 1. Chance-Constrained EMS Architecture: Logical View.

demand and availability (representing customer behav-
ior), as well as system-wide battery swapping rates are
effectively employed in the decision making process. If
we assume an OPF look-ahead time window of L2, the
states of controllable loads and storage units at time
step t+ L2 are employed as the boundary conditions in
Stage 2, i.e., SED sets a short-term target for the OPF,
updated hourly based on the macro system information.

2) In Stage 2, the OPF is solved with an L2-hour look-ahead
time window using the certainty-equivalent MPC. The
charging constraint for the EVs under plug-in operation
mode is updated by the aggregators through the AMI
system (Section IV-A). The control mechanism of the
BSS is discussed in Section IV-B. The look-ahead time
window starts with L2/�t2 time steps, and shrinks as
time progresses to the next hour. The look-ahead time
window will be changed to L2/�t2 as the next hour
starts. Ensuring both system and EV customer behav-
ior constraints, the OPF engine sends the next-time-step
dispatch signals to controllable loads, EV aggregators
and storage units. Since the OPF engine will first try to
meet the system dynamics and then to follow the SED
dispatch target, its outcome may be different from the
short-term plan in Stage 1. L2 should be set longer than
1 hour so that the OPF does not have to follow exactly
the SED dispatch signals. Deterministic forecasts are
used in this stage to (i) ignore small deviations between
the predicted and the realized data during a short time
interval, (ii) compensate possible communication delays,
and (iii) enable a fast response to system dynamics. The
information and plan asymmetry in the mid-term and
short-term stages are compensated periodically.

The forecast errors and dispatch delays of 5 minutes at
the second-stage are addressed by the grid primary generation
control and automatic generation control (AGC) mechanisms.
Once the EVs’ dispatch signal is acquired, it will last for
5 minutes and EVs can be regarded as constant power loads.
However, if the real time communication is enabled, EVs can
respond to Regulation D signals (RegD) from the independent
system operators (ISOs) such as PJM market. The conditional
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neutrality characteristic of the RegD allows the EVs to par-
ticipate in the frequency regulation with little impact on the
dispatch during system normal operating conditions. It is also
worth mentioning that the stability of the power system is
maintained by the traditional synchronous generators. Further
research is needed to address the system stability issue under
scenarios of high penetration of intermittent renewables (e.g.,
solar and wind) and lack of large synchronous generators.

III. THE FIRST-STAGE SED OPTIMIZATION

FORMULATION AND SOLUTION TECHNIQUE

In the first-stage SED problem, the hourly energy con-
sumption by the swapping batteries can be forecasted as a
disturbance to the optimization model. Load, wind, and solar
forecasts can be also incorporated as additive uncertainties and
modeled via probability distributions using weather and his-
torical datasets. We assume the disturbance to be a sequence
of independent, identically distributed random variables. Let
w1 be the battery swapping energy, and w2 be the net load—
the total renewable energy generation minus the total load. We
assume that there are enough number of chargers for EVs to
connect to. The availability of EVs under a plug-in operation
mode depends on the total number of EVs parked, modeled as
the charging upper constraint. The estimated daily EV energy
consumption in the plug-in mode is modeled as the total con-
trollable load EC during the next 24-hour interval. The first
stage is implemented in a central node, sample-based SMPC
method is used to solve the look-ahead SED problem in a
receding-horizon manner, and distributed algorithm ADMM
is used to manage the computation time.

A. Stochastic Chance-Constrained ED Optimization Model

Monte Carlo sampling approach is employed to approx-
imate the SED problem. A finite number of M scenarios
are generated, each assigned a probability of πm = 1/M.
Chance constraints are utilized so that the objective func-
tion can minimize the expected cost over all scenarios with
the optimization constraints satisfied in most scenarios. Let
x(k) = {PG,1(k), . . . , Lc,i(k), Bs,n(k)} denote the state vector
x at time step k, including the real power output of con-
ventional generating units PG, controllable loads Lc, and the
storage devices Bs. The input vector is denoted by u(k) =
{�PG,1(k), . . . , ul,i(k), uc,n(k), ud,n(k)} and the additive uncer-
tainty vector is represented by w(k) = {w1(k), w2(k)}. Instead
of the dispatch decisions following the load, we allocate
both generation and load to satisfy the power balance con-
straints and minimize the total economic dispatch cost. The
optimization problem is formulated in (1):

minimize
M∑

m=1

1

M

[
γ
(
Lm

c,i(K + 1)− EC
)2

+
K∑

k=1

(
n∑

i=1

Ci
(
Pm

G,i(k)
)+ 2cdum

d,n(k)

)]
(1a)

subject to

xm(k + 1) = Axm(k)+ Bum(k)+ Gwm(k) ∀k ∀m (1b)

0 = Cxm(k)+ Dum(k)+ Ewm(k) ∀k ∀m (1c)

H · Pm
net(k) ≤ F ∀k ∀m (1d)

um(k) ∈ U(k) ∀k ∀m (1e)

Pr
[
xm(k) ∈ X(k), ∀m] ≥ 1− ε ∀k (1f)

where A, B, C, D, E, and G are the state-space system matri-
ces and fixed. F is the vector of the transmission line flow
limits, and H is the power transfer distribution factor (PTDF)
matrix. Pnet is the vector storing intermediate calculation of
the net generation for buses. X and U are the feasible regions
for the state trajectory and control inputs, respectively. The
cost function (1a) consists of (i) the penalty on the deviations
from daily energy consumption of the plug-in EVs, (ii) the
quadratic generation cost of conventional units, and (iii) the
battery degradation cost reflecting the frequent discharge of
the BSS power to the grid. We assume the degradation cost
for charging the EV batteries are paid by the customers and,
hence, the total cost in the objective function only captures
the extra cycles of the BSS. Constraint (1b) represents the
state equation describing dynamics of the energy resources.
Constraint (1c) enforces the power balance. Power loss is
ignored in the model but can be considered by modifying
the loads based on the estimate of the total system losses.
Transmission line constraints are expressed in (1d). In (1e), the
input variables are restricted to ramp rate limits of generating
units, charging capacity of plug-in EVs and BSSs. Chance con-
straint (1f) ensures that the probability of scenarios in which
the state variables meet the enforced limits is equal to or larger
than 1− ε. Hence, the operation constraints are considered to
be satisfied in most scenarios. A few operation scenarios may
violate the chance constraints. For example, when the load
demand at a time is very high while the renewables output
is very low, it will then call for power generation from other
units. If the online generation capacity is not enough to pro-
vide the requisite power, the generation upper constraint will
be violated. The system will use either generation reserve to
meet the load demand or has to shed some loads.

Formulation (1) will result in a different solution in each
scenario m at time t. The average values of state variables at
time t + L2 are calculated, and the operating points of con-
trollable loads and energy storage units are used as the final
state targets of the second-stage OPF engine, while the ini-
tial state is considered the same in all generated scenarios.
The charging state of the plug-in EVs is set to 0 so that the
next 24-hours charging demand EC keeps constant. The resid-
ual between the estimated and actual power allocated to the
plug-in EVs is measured and compensated at the next time
step.

B. Convex Approximations of the Chance Constraints

The chance constraint (1f) is generally a non-convex formu-
lation and in need of a safe convex approximation to derive a
computationally efficient solution. Taking the convex function
φ(u) = (u+ 1)+, where (x)+ = max{x, 0}, gives the Markov
chance constraint bound [27], [28]. Convex approximation of
the generic Pr(f (x, w) ≤ 0) ≥ 1− ε is expressed as

E(f (x, w)+ α)+ ≤ αε (2)
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Algorithm 1 ADMM-Enabled SED Optimization
1: Inputs:

system data and operation constraints.
2: Initialize:

warm start.
local variables xm ← warm start value.
global variable z ← x1:M .
scaled dual variables λm ← 0.

3: Repeat:
4: x-update, each processor solves the MPC problem.
5: z-update, compute z based on coupled constraints.
6: λ-update, each processor updates scaled multipliers.
7: check the termination criterion, break when satisfied.

where α is a scalar. The parameter ε is fixed to 0.05, so
a 5% violation of the probabilistic constraints is allowed in
the optimization process. The convex approximation of (1f)
employing the above relaxation approach is given by

max
(
xm(k)− xmax)) ≤ TUm ∀k ∀m (3a)

max
(
xmin − xm(k)

) ≤ TUm ∀k ∀m (3b)

1

M

M∑

m=1

(
TUm + α

)
+ ≤ αε (3c)

where TU is also a scalar. Therefore, with the convex approx-
imation of the chance constraint, the relaxation formulation of
the SED problem remains a convex problem.

C. Distributed Stochastic ED Optimization via ADMM

The ADMM approach is employed in this paper to speed
up the computation of the chance-constrained optimization
problem. The state variables in (1) are xi(k) ∈ Rn×K . We
gather x values in all the generated scenarios and form a
3-dimensional matrix z where zm

i (k) ∈ Rn×K×M . We define λ

as the scaled dual variable of the ADMM with the same dimen-
sion as x. The problem can be then rewritten as the global
consensus problem [29] with the common global variable z.
The steps to implement the ADMM procedure are summarized
in Algorithm 1.

In step 2, a warm start is realized by solving the certainty
equivalent MPC problem of the optimization formulation
in (1). The suggested warm start can significantly reduce the
number of ADMM iterations. In step 4, the problem (1a)
to (1e) is split to a number of smaller MPC problems where
scenarios can be solved in parallel. In step 5, the local vari-
ables are aggregated to consider the coupling information (1f)
which is converted to convex constraints (3) and the ADMM
iterations include solving small convex optimization problems.
The MPC problems in x-update can be accelerated by cus-
tomized solvers. The computation time of z-updates depends
on the total number of samples M and can be solved in only
one CPU. 3-dimensional variables were converted to 2 dimen-
sions to solve the optimization problem in this step, in order
to further reduce the computation time.

Fig. 2. EMS communication with plug-in EVs through AMI.

IV. THE SECOND-STAGE EV CHARGING STRATEGY AND

SIGNAL COMMUNICATION

The second-stage optimization solves a short-term determin-
istic DCOPF and enables a two-way communication. Here, the
convex DCOPF-based optimization formulation is preferred,
since DCOPF is reliable and has a lower computation burden
compared to the OPF in AC setting. The DCOPF optimization
followed by an AC-feasibility check can ensure that the solu-
tions are feasible in real-world operation of transmission
system. The second-stage optimization results in the total
power dispatched to all generation resources and the total loads
allocated to all EV aggregators at the distribution level. The
total aggregated load to all EV aggregators will be propor-
tionally distributed based on the charging capacity upper and
lower limits. Distribution line limits can be considered as con-
straints for the charging stations. The upper bound limits of
the aggregator charging constraint—i.e., based on the number
of available EVs— can be enforced as the distribution line
limit minus the forecasted feeder load.

Following the second-stage dispatch and utility communica-
tions with EV aggregators, the reactive power dispatch signal
can be sent to charging stations and voltage magnitudes can be
compensated locally, combined with regulating transformers
in the distribution system. Alternatively, the voltage-reactive
power mode can be activated and charging stations can facil-
itate maintaining the voltage at each node autonomously with
lower level control. The IEEE Std. 1547-2018 also requires
the DERs to provide a capacity to inject and absorb the reac-
tive power. Hence, the proposed architecture is in line with
the current operation and standardized visions, and can be
applied directly to the legacy systems in practice. Note that
as the proposed model can keep the distribution system active
power within the distribution line thermal limits and node volt-
ages within the desired thresholds, only the communication
and power flow between the utility and plug-in EVs are mod-
eled (Fig. 2). The EV loads are aggregated to the associated
bus as additive load and OPF is run at the transmission level.
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The downstream dispatch signals and the upstream estimation
of the EV charging constraints are transmitted simultane-
ously. The EMS system and utilities communicate through
the wide area network (WAN), the utilities and charging sta-
tions communicate through local area networks (LANs), and
the charging stations and plug-in EVs communicate through
the neighborhood area networks (NANs). Note that the LAN-
level signals can be transmitted via the AMI in [3]. The
NAN level required EV signal collection and direct load con-
trol implementation has been validated by the EVCS in [30].
The EV customer privacy is preserved as only the aggregated
information is uploaded to the EMS (Fig. 2).

A. Control Strategy for EVs Under Plug-in Operation Mode

A multi-agent framework is suggested to manage the EVs
charging demand under the plug-in mode. The customers only
need to set the EV departure time tdep and minimum state of
charge (SOC) requirement Edep when they plug in their vehi-
cles, or such information can be populated automatically using
a default weekly driving profile. The aggregators receive the
above information and SOC data Eini from the smart meters
connected to each EV. Aggregators also control the EV charg-
ing energy demand at each time interval k. The second-stage
communication and controls for EVs under plug-in mode are
illustrated in Fig. 2. It details the signal and data flow among
the OPF, EV aggregators and EVs in Fig. 1. The following
procedure is proposed to charge the plugged-in EVs:

1) Initialization:
a) Import the EV charging capacity vectors umin

l , umax
l

based on the EV availability.
b) Import the system parameters and forecasts into the

EMS and evaluate the first-stage charging vectors.
2) Main Procedure:

At each time interval k, the system parameters and the
EV model will be updated as follows:

a) The EMS calculates the total power allocated to
the utility ul(k+1), and the power allocated to the
EV group s that is managed by the corresponding
aggregator, ul,s(k + 1).

b) The vehicle information tdep, Edep and Eini are
uploaded from the smart meters to the aggrega-
tor database, via which it calculates the charging
capacity umin

l,s (k) and umax
l,s (k) of the EV group s.

c) The aggregator evaluates the charging vector
up,j(k + 1) and downloads the control variables to
smart meters for EV charging in the next interval.

d) The EMS replaces umin
l (k+ 1) to umin

l (k+ 4) with
aggregated umin

l (k), and also umax
l (k+1) to umax

l (k+
4) with the aggregated umax

l (k) uploaded from the
aggregator database.

e) Update the SOC of connected EV j with up,j(k).
In the main procedure above, step pairs (a)-(b) and (c)-(d)

can run in parallel. In step (a), ul(k + 1) is allocated propor-
tionally to each EV group s. The ratio is actually the mean
charging capacity umin

l,s (k−1) and umax
l,s (k−1) of the EV group s

to the mean total charging capacity umin
l (k−1) and umax

l (k−1).
We limit the ul,s(k+ 1) within the range of umin

l,s (k) to umax
l,s (k)

at step (c), so the implementation delay of the proposed charg-
ing strategy is 5 minutes (equal to the time-step in Stage 2).
We assume that the charging capacity for a large number of
EVs does not change drastically within a short time interval,
thus the charging capacity at the next 20 minutes is updated
with that in step (d). We assume the sliding time window of
the EV aggregator is 24 hours starting from the current time
interval k1, and k2,j is the departure interval for each EV j at
time tdep,j. The charging schedule for each aggregator s con-
sidering the EVs’ departure time and battery SOC is found in
an optimization model formulated below:

minimize
∑

j

(
Ep,j(k1 + 1)− Edep,j

k2,j − k1

)2

(4a)

subject to

Ep,j(k + 1) = Ep,j(k)+�t · αcup,j(k) ∀k ∀j (4b)
∑

j

up,j(k1 + 1) = ul,s(k1 + 1) (4c)

Ep,j
(
k2,j

) ≥ Edep,j ∀j (4d)

0 ≤ Ep,j(k) ≤ Ecap,j ∀k ∀j (4e)

0 ≤ up,j(k) ≤ umax
p,j ∀k ∀j (4f)

The optimization model prioritizes the EV charging schedules
in (4a). Constraint (4b) represents the stage functions of EV
batteries. Constraint (4c) enforces the total charging capac-
ity of the aggregator equal to the power signal sent by the
utility. Constraint (4d) requires the SOC of the EVs to be
higher than the customer minimum requirement upon depar-
ture. Constraints (4e) and (4f) restrict the EV battery capacity
and power, respectively. The Edep,j is set to be 1.2 of the min-
imum requirement but limited to its capacity. As the EVs’
charging capacity and vector are calculated by each aggrega-
tor, the problem turns into a moderate size optimization, intact,
and can be parallelized. Only the aggregated EV information
will be communicated between the EMS and the aggregators.
When the batteries of the plug-in EVs are depleted, the cus-
tomers are assumed to swap their batteries with fully charged
batteries at the BSS.

It is worth mentioning that the proportional allocation of
the total load ul(k) to each charging station within its limits
ensures that each charging station has a certain level of flex-
ibility. A few EV owners may prefer to minimize the total
charging time instead of charging their EV batteries to the
required SOC upon departure and enjoy a lower price to charge
their EVs. Once the customer sets the EV charging target as
to minimize the charging time, from the EV charging sta-
tion perspective, the upper bound charging constraint remains
the same while the lower bound charging demand increases.
Through the suggested two-way communication platform, the
utility will allocate the power within the charging capacity
upper and lower limits to the charging station. The EVs owned
by such class of customers with customized preferences will
be charged during that time period based on the EV charging
priority model listed in equation (4). Hence, our proposed EV
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TABLE I
GENERATOR PARAMETERS OF THE 12-BUS TEST SYSTEM

charging strategy does not rely on strong assumptions of cus-
tomer behaviors, and can be employed to satisfy different EV
customer demands simultaneously.

B. BSS Model for EVs in Battery Exchange Mode

The BSS can be modeled as a queuing network: the EVs
form an open queue and the batteries circulating in a close
queue [31]. The number of batteries in the BSS will be, hence,
constant. We assume that the BSS reserves enough number of
fully-charged batteries for EVs to exchange as needed. We also
assume that there are enough number of swapping servers and
the batteries can be swapped when the EVs arrive. Then, the
BSS can be regarded as an energy storage resource with the
power converted to the stored energy uc, the power converted
to electricity ud, and the energy consumption us during each
time interval based on the battery exchange rate. If i denotes
the number of an energy resource, the BSS energy dynamics
Bs can be represented as follows:

Bs,i(k + 1) = Bs,i(k)+�t
(
αcuc,i(k)− (αd)

−1ud,i(k)
)

− us,i(k) (5)

The self-discharge of the batteries is here ignored. us is the
total energy consumption of customers who subscribe the ser-
vice and those who use the plug-in charging but occasionally
need the BSS service to meet the EV energy demand.

V. NUMERICAL CASE STUDIES

A modified 12-bus test system in [32] is utilized to verify the
performance of the proposed EMS architecture. As illustrated
in Fig. 3, the system consists of 3 conventional generating
units: one coal-fired (G1) and two natural gas units (G2, G3),
parameters of which are presented in Table I. The aggregated
charging demand for EVs under the plug-in mode is modeled
as a controllable load (Lc,4) and the BSS is regarded as a
special energy storage resource (Bs,5). All the five resources
are considered dispatchable. This test system hosts two DER
units: a wind farm (R1) and a photovoltaic (PV) power plant
(R2) with the total capacity of 200 MW and 120 MW, respec-
tively. Hence, the total capacity of the solar and wind power
is 320 MW and features nearly 16% penetration in terms of
the total generation capacity. The predicted and actual data for
renewable and load forecasts are taken from ERCOT in [33]
and the weekly data captured in the week of December 18,
2017 in Texas is utilized in our simulations. The scale fac-
tor for wind farm, PV plant, and the load are 1/100, 1/10, and
1/32, respectively. The day-ahead forecasts are replaced by the
current-day forecasts in an hour-ahead manner. A Gaussian

Fig. 3. The studied testbed: a modified 12-bus test system.

probability distribution truncated at ±2δ is utilized to repre-
sent the load and renewable forecast errors, where δ denotes
the standard deviation. Uncertainty levels larger than ±2δ is
assumed to be handled by load curtailments and generation
reserves.

The target area is assumed to be hosting 100,000 EVs
accounting for 30% of the total vehicles. The charg-
ing/discharging efficiencies are 90%. The EV battery capacity
is 70 kWh and cd is set to 21.4 $/MWh. There are 70,000 EVs
under plug-in mode and the remaining are operated under the
battery swapping mode. Driving profiles for EVs under plug-in
mode were obtained from the NHTS database [34], [35]. 1000
driving profiles in Texas are randomly selected to account for
the customer behaviors of plug-in EVs. The initial SOC of
the EVs is uniformly distributed between 0 to 80% of the
battery capacity. The charging power is set to 10.2 kW. We
also assume that the customers will plug-in their EVs to charge
when the parking time is longer than half an hour. Each aggre-
gator is assumed to manage 100 to 200 connected EVs. The
BSS capacity is set to 525 MWh. We reserve 20% of BSS
capacity for battery swapping, so a penalty will be added when
the SOC of the BSS is lower than 20%. The SOC of the BSS
could not be lower than 5% in order to protect the batter-
ies. The charge/discharge rate of the BSS is 121 MW. The
estimated energy consumption of battery swapping is derived
from [36] based on the EV arrival rates. The actual energy
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TABLE II
SYSTEM OPERATION COSTS IN DIFFERENT TEST CASES

consumption of the battery swapping is randomly generated
using Poisson probability distribution.

A. Simulation Results

7 days of system operation are examined in the simula-
tions. L1 is equal to 24 hours, and L2 is equal to 3 hours. We
evaluate several different test cases (TC): (TC1) the base case,
where the optimal solution with complete knowledge of renew-
ables and load curves is found and the EV customers behavior
exactly match that of the general estimations; (TC2) the cer-
tainty equivalent MPC, in which the uncertain parameters are
substituted by the forecasts mean values; (TC3) the SMPC,
in which the SED is calculated as one large optimization
problem; (TC4) the SMPC, in which the SED is distributed
using the ADMM method where x-update and z-update are
solved using CVXGEN and SeDuMi solvers, respectively.
Using CVXGEN [37], the x-updates can be managed very
fast, even executed in series, as each MPC problem can be
solved in milliseconds. All test cases are simulated with CVX
optimizer in MATLAB 2017a on a Dual 8-Core 2.6GHz Intel
Xeon machine.

Comparison results are summarized in Table II. The cost
values found in TC2, TC3, and TC4 match the base case
(TC1) as the proposed EMS architecture intelligently uti-
lizes both the macro (system-wide) and micro (AMI-recorded)
information to dispatch the available resources. The ADMM-
enabled SED in TC4 runs 2 times faster than that in TC3.
The approximate chance constraints in TC3 and TC4 pro-
vide conservative operating points for the plug-in EVs and
the BSS. Fig. 4 demonstrates that the MPC problem in TC2
requires the BSS to operate at its lower capacity during weekly
peak-load intervals, still not as conservative as that in TC3
and TC4. The difference between the operating points and the
simulation results in TC3 and TC4 is primarily driven by the
ADMM method which ensures an optimal convergence, even
with sub-optimal solutions that may vary.

Note that the base case scenario in TC1 assumes a com-
plete knowledge of renewable power outputs, customer load
curves and battery swapping curves of BSSs. However, the
availability of EVs under plug-in operation mode is modeled
as the charging upper constraint, the charging lower constraint
is assumed to be 0, and the aggregated EV demand is assumed
to be flexible which can be scheduled during the day. Hence,
the constraints and the EV demand under plug-in operation
mode are the relaxation formulation to the actual EV charg-
ing optimization problem. Therefore, the simulation result in
TC1 is a computationally tractable lower bound compared with
the intractable ‘optimal’ solution for large-scale EV charging

Fig. 4. 3-hour-ahead SOC operation targets of the BSS: The first-stage SED
outcome on Friday, 22 December 2017.

Fig. 5. The charging curve and upper/lower charging constraints of the
aggregated EVs under plug-in mode.

problems caused by the curse of dimensionality. The operation
cost difference between TC1 and TC4 is 1.81%, so the opti-
mality gap between the ‘optimal’ solution and that found in
TC4 is less than 1.8%. Note that the optimality gap is primarily
driven by the forecast errors.

B. EV Dynamics and Impacts on Grid Operations

The EVs’ charging schedules and the aggregated charging
constraints evaluated under the plug-in mode are demonstrated
in Fig. 5. The EVs parking duration less than half an hour is
ignored, thus the real-time upper charging constraint is less
than that estimated using the EV availability data from the
NHTS dataset. It, however, revealed a small impact on the
EVs’ charging schedules since the maximum charging power
sent from the EMS to aggregators is less than 250 MW. EVs
under plug-in mode will charge mostly during the night load
valley and a few charge the minimum required energy dur-
ing the day-time peak hours. The real-time lower charging
constraint is nearly 0 which is not included in Fig. 5.

Penetration of EVs and DERs will significantly affect the
SED solutions. According to Fig. 6, the impact of EVs alone
on the load profile is not significant with no obvious super
off-peak EV charging hours. If both EVs and DERs are con-
sidered, the modified net load profile can be characterized as
the difference between the original load plus the EV demand
and the DER power generation plus the BSS discharge. Hence,
the load profile will then change sharply as demonstrated in
Fig. 7. The system minimizes the total operation cost which
reduces the load variations. The increased noise in the load
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Fig. 6. Comparison of the original and the modified load profiles with 16%
renewable and 30% EV penetration, when only EV load impact is considered.

Fig. 7. Comparison of the original and the EMS-enabled load profiles with
16% renewable and 30% EV penetration.

profile is primarily driven by the system uncertainties and
communication delays.

C. Solution Robustness

The estimated energy consumption of the EVs under plug-
in mode in the next 24 hours may be different from the real
energy demand, or in some cases depending on the weekly
loading conditions and weather variations, the utility may
desire to adjust the EC to increase the daily energy charged
by the plug-in EVs when the next-week forecasts are avail-
able. Although the real-time upper constraint for the plug-in
EVs will decrease and is different from the estimated value,
the system will still stably operate within the operating lim-
its as the OPF acquires the real-time maximum and minimum
charging constraints of the plug-in EVs. The aggregated SOC
of the connected EVs and the difference between the charg-
ing demand and the actual energy charged can be uploaded to
the SED engine routinely, through which the SED can adjust
the charging demand accordingly. Fig. 8 illustrates the charg-
ing curve with 1.5 EC in TC4 where the system is observed
to be robust. We reduce 60 MW in EC when the aggregated
SOC reaches its 80% capacity. But the aggregated SOC of the
plug-in EVs will still reach to 99.1% at the end of the 7th day
and there is 148.1 MWh unfulfilled charging demand. The EC

can be then adjusted back to the original value or less at the
beginning of the next week.

Fig. 8. The charging curve and charging constraints of the aggregated EVs
with 1.5 EC in TC4.

TABLE III
COMPUTATION TIME VS. DIFFERENT NUMBER OF SAMPLES

D. Sensitivity Analysis and Role of Uncertain Parameters

1) Performance of the ADMM-Enabled SED: The execu-
tion time reported in Table II reflects the system simulation run
time in 7 days and includes the time of solving hourly SED
optimization, 5-minute DCOPF optimization, and dynamic
simulations of the driving profiles for EV customers under
plug-in mode. The number of samples M in the first-stage
SED problem—which was set 100 in the simulations—has a
significant impact on the performance of the SED problem as
the total number of variables is 269 ∗ M. The sample-based
SMPC method is robust to any distribution of uncertainties
as the suggested approach is based only on samples that are
generated from the distributions, and does not rely on cer-
tain types of distributions. But the computation time increase
exponentially as the number of samples increases. The sensi-
tivity of the average computation time of the first-stage SED
problem with variations in M is shown in Table III. With
the same samples, ADMM-enabled SED in TC4 has a bet-
ter performance than the large-scale SED optimization in TC
3 and the difference in computation time can be further high-
lighted as M increases. Deterministic sampling can be applied
to keep a medium number of samples, while ensuring the
SMPC convergence.

2) Massive Penetration of EVs: The weekly peak load is
realized at 7 p.m. on Fridays as shown in Fig. 6. With 30%
EV penetration in the grid, the SOC of the BSS reaches 20%
of its capacity at 8 p.m., thus even if the forecast of the addi-
tive battery swapping consumption of the unsubscribed EV
customers is not considered, the BSS charging to avoid the
penalty of its SOC below 20% will not create a new weekly
peak. However, when the EV penetration level exceeds 60%
to 90%, the BSS reaches 20% of its capacity at or before
7 p.m. even with the SED approach applied. The BSS will
charge during weekly peak loads to avoid the penalties and
creation of a new peak. If only the EV load impact is consid-
ered, Fig. 9 shows that the new peak is 1594 MW at 7 p.m.
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Fig. 9. Comparison of the original and the modified load profiles with 16%
renewable and 90% EV penetration when only EV load impact is considered.

Fig. 10. Comparison of the original and the EMS-enabled load profiles with
16% renewable and 90% EV penetration.

Fig. 11. Comparison of the original and the EMS-enabled load profiles with
16% renewable and 90% EV penetration, and with additive battery swapping
demand forecast.

on Friday night with 90% EV penetration. If both EV load
and DER generation impacts are considered, Fig. 10 shows
that the new peak at that time is 1544 MW, and there will
be no obvious peak and off-peak time for the EMS-enabled
load profiles except the weekly peak time periods. One could
realize that the additive battery swapping demand could not
be ignored in cases with high EV proliferation. If the actual
us (from the simulation results with 90% EV penetration in
Section V-A) is considered as the predicted us, the updated
results reveal that it can avoid the simultaneous occurrence
of the peak and the BSS minimum SOC by setting the BSS
reaching 20% of the capacity at 8 p.m. again. The new EMS-
enabled load profiles with additive battery swapping demand
forecast is shown in Fig. 11.

3) High Rate of EV Customers Subscribing the BSS Service:
We assume that a sufficient number of charging facilities for

Fig. 12. Comparison of the original and the EMS-enabled load profiles with
16% renewable and 30% EV penetration, with increased BSS customers from
30% to 70%.

the plug-in EVs exists in all scenarios and the BSS capacity
does not change. With high percentage of customers subscrib-
ing the BSS service, the BSS could not fully fill the off-peak
load valleys due to the capacity limits and very low bat-
tery swapping rate during the night. The BSS will charge the
remaining demand during daytime off-peak hours to meet the
swapping peak during 4 p.m. to 6 p.m. and avoid the mini-
mum SOC at the peak time 7 p.m. The new EMS-enabled load
profiles with 30% EV penetration and 70% subscription to the
BSS service can be seen in Fig. 12, where the load variation
is larger compared with that in Fig. 7. In practice, PVs can
be good companions for the BSS with limited capacity. It is
worth mentioning that even the BSSs are assumed to reserve
a 20% capacity for battery swapping, one BSS with limited
capacity may still occasionally run out of fully-charged bat-
teries. The BSS may swap a not-fully-charged battery to the
EV customer. From a system prospective, it can be regarded
as a source of uncertainty for the battery swapping consump-
tion, and will be managed in the next time interval by the
EMS since it does not directly affect the power flow balance.
Future research with detailed models should be devoted to the
impact of BSSs capacity on the grid operation.

4) Increasing Penetration of Renewables: The renewable
output with 16% renewable penetration and 90% EV penetra-
tion in the grid can be seen in Fig. 9, where EV load shows a
characteristic of valley filling most of the time. The 12-bus
test system in the case study is actually a modified IEEE
14-bus test system where no transmission line constraints
are provided. Neglecting the transmission line thermal limits
and when the power output of the wind and solar resources
becomes 3 times larger than original, the EV load represented
by the red line in Fig. 13 will present a characteristic of
renewable-follower instead of valley-filler. However, the new
proposed EMS engine will still try to reduce the daily variation
of peak and off-peak load (see Fig. 14), as similarly observed
in Fig. 10. This is because the optimization objective is to
minimize the system total operation cost by dispatching both
generation and EV loads.

The transmission line thermal limits can be added when
congestion needs to be considered. If we assume the thermal
limit for both transmission lines connected to the bus with
plug-in EV load is 150 MW, Fig. 13 demonstrates that the
renewable-follower characteristic of the plug-in EV load with
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Fig. 13. Comparison of the original and the modified load profiles with 36%
renewable penetration and 90% EV penetration when only EV load impact is
considered.

Fig. 14. Comparison of the original and the EMS-enabled load profiles with
36% renewable and 90% EV penetration.

line thermal limits is degraded compared to the case where
the thermal limits are neglected, especially during the 7th day
with high renewable generation. This is because the transmis-
sion line limits can affect the system capability in dispatching
EV loads to minimize cost. As a result, the reduction in daily
peak and off-peak load variation in EMS-enabled load profile
when the transmission line limits and congestion are consid-
ered is not as obvious as the case when such limits are ignored
(see Fig. 14). The operation cost in TC1 for this scenario is
found $ 1,297,491, while it is observed $1,323,796 in TC4
(the optimality gap in this case is less than 2.0%).

VI. DISCUSSION

In this section, the IEEE 118-bus test system is employed
to evaluate the scalability of the proposed framework and the
optimality of the suggested models. The test system specifi-
cations are taken from [38] with the following modifications:
Two wind farms with rated power of 750 MW and 500 MW
are placed at bus 25. One solar farm with a rated power of
650 MW is placed at bus 33. Hence, the total power capacity
of the renewable sources is 1900 MW which features nearly
16% penetration in terms of the system total generation capac-
ity. While the predicted and actual data for renewable and load
forecasts are taken the same as those in Section V, scale fac-
tors of 1/16, 1/1.85, and 1/12.8 are applied for wind farms, PV
plant, and the load, respectively. Truncated Gaussian probabil-
ity distributions are used to represent the load and renewable
forecast errors. 60 Sobol quasi-random samples are employed

TABLE IV
SYSTEM OPERATION COSTS IN DIFFERENT TEST CASES FOR

THE IEEE 118-BUS TEST SYSTEM

in order to reduce the number of samples and enhance the com-
putational efficiency of the sample-based SMPC optimization.
The system is assumed to have 300,000 EVs accounting for
30% of the total vehicles. There are 210,000 EVs under plug-in
mode and the remaining are operated under the battery swap-
ping mode. The controllable load for EVs under the plug-in
mode is placed at bus 115, and the BSS is placed at bus 117.
Other assumptions for plug-in EVs and BSSs are the same as
those presented in Section V. The same simulation configu-
ration in Section V-A is also used except that the CVXGEN
solver is not used in the x-update of TC4, as this solver is
only suitable to solve small and moderate-size MPC problems
rather than large MPC problems [37].

A. Scalability

Computation comparison results of different test cases on
the IEEE 118-bus test system are summarized in Table IV.
Similar to those presented in Section V-A on the 12-bus
test system, the cost values found in TC2, TC3, and TC4
match that of the base case scenario (TC1). However, due
to the curse of dimensionality, the programming platform
(MATLAB) failed to compute TC1 with a time step of 5 min-
utes. We, instead, used the hourly data to compute the results
in TC1. Each first-stage SED problem in TC3 which is calcu-
lated as one large optimization problem can still be computed
within 5 minutes since deterministic samples are used and
computation time of each SED problem is ∼240 seconds. The
total computation time of the ADMM-enabled SED in TC4
achieves only a little faster performance than that in TC3. The
degraded performance in TC4 is caused by the non-customized
solver for MPC problems and also the limited available CPU
cores (16 cores) to solve the x-update (which has 60 samples
and results in 60 MPC problems) of ADMM method in par-
allel. One can conclude, from the comparison results, that the
proposed chance-constrained EMS is scalable to large power
grids. Note that the ADMM method to accelerate the com-
putation speed of the first-stage sample-based SED problem
in large-scale power grids requires additional CPU cores if
customized MPC solvers are not used.

One needs to note that the proposed second-stage EV charg-
ing strategy is also scalable in terms of the number of EVs.
This is because EV aggregators are employed to monitor and
manage the charging schedules under the plug-in mode. The
charging priority of EVs is calculated in parallel (simultane-
ously) for each EVCS during each charging period. Hence, the
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Fig. 15. Comparison of the original and the modified load profiles with 16%
renewable and 30% EV penetration in the IEEE 118-bus test system when
only EV load impact is considered.

Fig. 16. Comparison of the original and the EMS-enabled hourly load profiles
with 16% renewable and 30% EV penetration in the modified IEEE 118-bus
test system, and the system hourly operation costs. The y axis corresponding
to the EV load is located on the left, and that of the system operation cost is
on the right.

computation and communication requirements for the second-
stage EV scheduling problem are not burdensome, and the
network size will not play a significant role.

B. Optimality

The penetration levels (in percentage) of renewables and
EVs in this case are kept the same as in Section V-A. The
total generation capacity of the IEEE 118-bus test system is,
however, much higher than its original load compared with
the 12-bus test system; as a result, the renewables in this case
will supply more load in percentage than that in the 12-bus
test system. As shown in Fig. 15, the flexibility of the EV
load is utilized to either fill the super off-peak of the original
load during the night, or follow the renewable output when
the renewable generation is high. Similar to Fig. 7, Fig. 10,
and Fig. 14, the proposed EMS engine minimizes the total
operation cost and reduces the load variation (see Fig. 16).

The operation cost difference between TC4 and TC1 is
evaluated 1.2% (i.e., the optimality gap of less than 1.2%).
Overall and during all simulations, the optimality gap of
the proposed approach is found less than or equal to 2%
under different penetration levels of renewables and EVs and
on different test systems. The numerical results demonstrate
that the proposed method achieves a nearly-optimal solution
based on the forecast accuracy available in the utility indus-
try practices. In particular, the performance of the proposed
method is mainly dependent on that of the first-stage SED

problem, i.e., the second-stage DCOPF is the deterministic
optimization problem based on the first-stage calculations, and
the EV charging scheduling model in equation (4) only tries
to maintain the EV flexibility and prioritize the EV charg-
ing schedule. The first-stage SED problem is formulated as
an SMPC problem which can achieve a nearly-optimal solu-
tion when a good forecast is available. The good forecast and
system state estimation can be obtained by the proposed two-
stage architecture through system level prediction and two-way
communications. The optimality is maintained when using
the convex relaxation of the chance-constraint optimization to
solve the SMPC problem. Hence, the proposed model guaran-
tees a nearly-optimal solution during most of the scenarios.

VII. CONCLUSION

With the growing penetration of renewables and EVs in
modern electrified power grids, advanced EMS designs are
required to address the intensified system uncertainties and
high-demand flexibility requirements. A two-stage chance con-
strained EMS architecture is proposed in this paper, where in
the first stage, the system-level forecast information embed-
ded in an stochastic MPC algorithm is utilized to optimize
the short-term (next 24-hour) energy dispatch of flexible loads
and storage units, while the second stage implements the dis-
patch signals with respect to system security and real-time
requirements. The proposed EMS architecture successfully
captures the real-time heterogeneous randomness in the grid
and of customer behaviors—harnessing a full advantage of
both macro (system-wide) and micro (AMI-captured) data—
to model and dispatch the time-dependent controllable sources
(e.g., EVs and storage units). Different EV charging modes and
their impacts on the grid operation were extensively analyzed
through which the suggested control mechanism was proven
robust as it tries to meet the first-stage targets without violat-
ing the motion constraints of the individual objects. With the
AMI and BSS in place, EV charging management is done via
aggregators and EVs under plug-in mode were able to fill the
off-peak load valleys with no large load spikes. Promising a
low computational burden with an embedded distributed algo-
rithm (ADMM) and parallel computing, the proposed EMS
architecture only communicates the aggregated data and can
be effectively utilized for dispatch optimization in large-scale
integrated transmission and distribution models.

Future works can be directed toward: (1) utilizing other
customized solvers for MPC problems with more CPU cores,
facilitating the ADMM method to speed up the implementation
of the first-stage SED problem in large-scale power systems
with guaranteed convergence; and (2) investigating the solv-
ability and practical algorithms to solve the chance-constrained
SED with look-ahead features in AC settings.
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