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Abstract—Several electric vehicle (EV) charging algorithms
have been recently suggested to meet different optimization
objectives in power grids. In this paper, a holistic mechanism
is proposed to manage the operation of EV charging stations
(EVCSs). The proposed framework offers adaptive operation
strategies for the EVCS operators to effectively manage the
EVCS under different penetration levels of EVs, considering both
normal operating conditions and restoration processes during
interruptions and emergencies. The performance of the proposed
approach is tested with real data and numerically analyzed
on the system operational costs under different EV and PV
penetration scenarios. We also demonstrate that the proposed
adaptive operation mechanism could bring significant advantages
to the operation and control of power grids when facing different
operating conditions.

Index Terms—Electric vehicle (EV); charging strategy; EV
charging station (EVCS); PV system; power system planning.

NOMENCLATURE
A. Indices
k Index for time-steps (1,...,K).

B. Parameters

Qe, O Charge/discharge efficiency of the battery.

B Percentage of Total Energy.

¥ Penalty factor.

A Locational marginal price of the electricity
($/MWh).

Agr Total power output of renewables (MW).

Cd Battery degradation cost ($/MWh).

Ec Forecasted energy consumption of PEVs in
the next 24 hours.

Lo Load of original customer demand.

Ve Value of renewable curtailment.

C. Variables

Lo Load of PEV.
Pc Curtailed power of renewables.
Pr Active power from the external grid.
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Pr Effective active power of renewables inte-
grated into the grid.

Ue Converted power to stored energy.

Ug Converted power from EVCS to electricity.

I. INTRODUCTION

HE research and development on power grid flexibility
and resilience have been intensified over the past decade
facilitated by the advent of emerging technologies in realizing
a smarter electricity grid. Such technologies include battery
energy storage systems (BESSs), distributed generators (DGs)
and electric vehicle charging station (EVCSs) with smart
charging algorithms and smart mechanisms for communication
with the electric vehicles (EVs), to name a few. The BESS
has been deployed to reduce the system operational costs
and provide ancillary services to the grid—e.g., frequency
regulation [1] in normal operating conditions as well as grid
support services during emergencies [2]. However, BESSs are
attributed a high capital cost at the moment and the frequent
charge and discharge actions will expedite their degradation
over time. Hence, the deployment scale of the BESS is
currently limited and the investment on the BESS technologies
is restricted by the economic constraints in practice [3]. The
DGs using diesel generators and natural gas will enhance
the reliability performance of the distribution system and
reduce the network losses. The conventional DGs are typically
employed to supply the critical loads in normal and emergency
operating conditions. However, with the intensified environ-
mental concerns and the target for a sustainable grid of the fu-
ture, the intermittent renewable energies, such as photovoltaic
(PV) solar and wind power, are widely being deployed in the
distribution systems as distributed energy resources (DERs)
[4]. EVs are also considered one critical asset that can help
reduce the carbon emissions in the transportation sector [5].
With the smart charging mechanisms managed by the EVCS
operators, EVs can be utilized as an energy storage unit to
respond to the intermittent renewable energies [6] and for an
enhanced feeder resilience during emergencies. Different from
the BESSs, the enhanced grid flexibility provided by the EVs
does not impose additional capital costs as the EVs are owned
by the customers. EVs can also be charged through the power
delivered by the intermittent DERs and the battery degradation
cost is paid by customers. The increasing penetration of EVs
and the expansion of EVCSs will bring about potentials for
huge flexibility provision in the power grids of the future.
There are several challenging concerns when planning to
incorporate EVs and EVCSs to the power grid. The uncoor-
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dinated charging of plug-in electric vehicles (PEVs), which
assumes EVs to charge upon arrival at a particular location,
will significantly increase the peak demand and may require
gradual or immediate upgrade of electricity delivery infrastruc-
ture in power distribution systems [7]. The operation strategies
of EVCS becomes further important when facing an increasing
trend in deploying EVs in the grid. Peak-shaving algorithms
have been proposed to improve the performance of combined
EV and PV systems during normal operating conditions [6].
The use of EVs to improve the grid reliability has been studied
in [8]. Several countries are promoting projects to incentivize
higher EV penetrations, aiming to replace the combustion
cars by EVs up to 100 percent [9]. Solutions and strategies
facilitating the adaptive operation of EVCSs to meet the grid
performance requirements under different operating conditions
and different EV penetration levels are needed to address this
emerging grid transformation.

The paper’s main contributions are summarized as follows:

1) An adaptive operation framework including four strate-

gies is proposed for EVCSs to handle various operating
conditions and EV penetration levels.

2) We numerically demonstrate the economic benefits of

the proposed adaptive operation framework for the EV-
PV integrated systems.

The rest of the paper is organized as follows. Section II
presents the charging strategies of EVCSs under normal op-
erating conditions. Section III introduces the different restora-
tion processes for EVCSs considering various interruptions.
Section IV presents the numerical case studies and simulation
results, followed by the conclusions in Section V.

II. EcCONOMIC DISPATCH METHODS FOR EVCSS UNDER
NORMAL OPERATING CONDITIONS

The impacts of EVs and renewables on the grid performance
requirements vary depending on the penetration levels, spatio-
temporal characteristics, and the imposed stochasticity. Very
low penetration of EVs and renewables in a feeder will not
significantly impact the grid and, hence, uncoordinated EV
charging algorithms can be employed in such circumstances
where there will be no renewable curtailments. The increasing
penetration of EVs and renewables in the feeder will have a
significant impact on the load curves and economic operation
of the feeder. Smart charging algorithms should be developed
and employed that can account for the renewable curtailments
and are compatible with the communication networks with
smart meters.

A. Price-based Optimization of EVCSs under Low Penetration
of Utility-Scale EVs

The price-based economic dispatch is suitable for operating
microgrids with DERs such as EVCSs and PVs, when the
utility-scale DER penetration is low. The pricing signals, i.e.,
the locational marginal prices (LMPs), are generated by the
transmission level economic dispatch. The penetration level of
DERs in the microgrid can be high in such cases, as long as the
percentage of controllable loads and power generation remains
relatively low in the utility with little impacts on the LMPs.
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In other words, the ratio of the dispatchable DERSs to the total
load in the utility should remain small so that the DERs’ op-
eration strategies do not significantly affect the transmission-
level economic dispatch results. EV charging can be scheduled
during the lower price time intervals, and the EVs’ flexibility
can be used to avoid the renewable curtailments.

The joint optimization problem to dispatch both EVCS and
PV systems is formulated in equation (1) — (12). The objective
function of the price-based economic dispatch is to minimize
the operational costs of the combined EVCS and PV systems
based on the acquired pricing signals.

K
min Y (A(R)ue(k) + (2ca — A(k))ua(k) + Vo Po(k))

k=1

+OFgv + OFpy (1
S.t.
Lc(k + 1) = Lc(k) + acuc(k) — (Ozd)ilud(k) Vk (2)
k2
> acte(k) = (ca) 'ua(k) > BEc 3)
k1
0 < w(k) <ul™ Vk 4)
0 < wuqlk) <ul®® Yk (5)
Po(k) + Pr(k) = Ar(k)  Vk (6)
0 < Pr(k) <Ag(k) vk 7
Pr(k) + Pg(k) — uc(k) +ua(k) = Lo(k) ~ Vk  (8)
P < Pg(k) < PR VEk 9)
—Pr, SPR(I{Z =+ 1) — uc(k =+ 1) + ud(k + 1) — (PR(]{Z)
—uo(k) +ug(k)) < P, Vke[l,K—1] (10)
OFgy =v(Lc(K + 1) — Ec)? (11)
K
OFpy ==Y A(k)Pc(k) (12)
k=1

The objective function (1) consists of (i) the cost for
charging EVs, (ii) the revenue for discharging EVs—the
degradation cost of EVs are considered when the vehicle to
grid (V2G) operating mode results in extra battery cycles to
EV customers, (iii) the curtailment cost of PV power, (iv) the
penalty cost for deviations from daily energy consumption of
the PEVs reflected in (11), and (v) the revenue for PV systems
to follow the dispatch signals presented in (12). Constraint
(2) represents the state equation describing dynamics of the
EV batteries, where self-discharge is ignored. Constraint (3)
describes the required charging demand of the EVCS during
a certain time interval. Multiple levels of charging demand
during different time intervals can be described in (3) with
different selections of ki, ko and (3, the values of which can
be obtained though historical datasets. Constraints (4) and (5)
enforce the EVCS power to the charge and discharge capacity
limits. Constraints (6) and (7) represent the effective PV power
output and curtailment, limited above by the total power
output of the PV system. Constraint (8) enforces the power
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balance requirements. Constraint (9) specifies the exchange
power limits of the feeder. In (10), the DER power variation
in two consecutive time-steps is restricted to a pre-specified
value. We define the joint dispatch of EVCSs and PV system
through the proposed optimization problem (1)-(12) as the
EVCS Operation Strategy 1.

B. Cost-based Economic Dispatch of EVCSs under Massive
Penetration of Utility-Scale EVs

The price-based economic dispatch optimization is useful
when the utility-scale EV penetration level is low. Under
medium or high utility-scale penetration of EVs and renew-
ables in the grid, the prices will be impacted significantly by
the dispatch of DERs. Hence, the EVs and renewables should
be accurately modeled and wisely dispatched at the transmis-
sion level, with the exception of the small-scale EVCSs with
high uncertainty of EV customer behaviors or a few EVCSs
participating in the transactive markets. Cost-based economic
dispatch that minimizes the total system cost can be employed
to optimize the dispatch and EV charging schedules, where the
dispatch problem at the transmission level should not violate
the distribution system constraints.

As the optimization problem with thousands and millions of
EVs is very large and hard to solve, there exist two approaches
to deal with this computationally-intensive challenge: (i) in the
current regulated electricity markets with independent system
operators (ISO), multi-agents system can be employed to
manage the EV charging locally and communicate with the
ISO. In such scenarios, only the aggregated EV information is
considered by a central station and the optimization problem
becomes a moderate-size problem to solve. (ii) in the dereg-
ulated electricity markets, the optimization problem can be
distributed to all nodes. Each station or node solves its own
optimization problem, considering coupling information from
the neighboring nodes or the globally coupled information.
We here define the cost-based transmission-level economic
dispatch of EVs as the EVCS Operation Strategy 2. Further
research is needed to address the scalability of the optimization
problem and efficient algorithms accordingly.

III. RESTORATION STRATEGIES FOR EVCSS UNDER
INTERRUPTIONS AND EMERGENCY OPERATIONS

We utilize the EVs’ flexibility to reduce the system op-
erational costs during normal operating conditions, while
mitigating the impacts of the feeder-level interruptions during
emergencies. If there is an outage in the feeder, the unused EVs
can serve as a grid-support resource: EVs can discharge some
energy to support the interrupted load during interruptions, and
EVs can charge or swap the batteries in other feeders during
the recovery process or during their travels. This potential for
EVs and PVs can be further highlighted for feeder resilience
support when considering the rapid deployment of such tech-
nologies in modern power distribution systems; furthermore,
as more charging facilities are available in other feeders, EVs
can be regarded as mobile energy batteries to support the loads
in the feeder when necessary.
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The system-level blackouts or other high-impact low-
probability (HILP) events driven by extreme weather condi-
tions may result in the majority of the feeders in the system
being interrupted [10]. We regard the conventional restoration
mechanisms with load pick-up and crew dispatch [11] as the
primary restoration strategy. We here define and investigate
a restoration approach focusing on the EVs and distributed
generators as the ancillary restoration process. The proposed
framework for ancillary restoration can be seen in Fig. 1. It
is a complementary restoration approach that facilitates the
primary restoration process, and it can be used under both low
and high penetration levels of DERs. The restoration steps are
described as follows:

1) The EVCSs will charge the EV batteries to high SOCs
during the normal operating conditions several hours
ahead of the HILP events with available or projected
weather forecasts.

2) During the interruption, the EV and PV systems can
form a microgrid to supply the feeder or the home
depending on the scale of the DERs.

3) During the Recovery Action stage

a) The communication between the EVCS and the
utility should be connected first so that the EV load
can be estimated and scheduled along with the pri-
mary restoration actions. The EV load scheduling
and EV load recovery methods under low EV and
high EV penetration levels are different.

b) With low EV penetration in the utility, the EVCS
can maximize the power recovery of connected
EVs within the feeder constraints. Other survived
or recovered feeders with battery swapping stations
can help swap the batteries for the EVs that could
not be charged to the desired SOC for the trip.

c¢) The utility needs to seek a trade-off between
the amount of recovery power and increased EV
load demand under high EV penetrations. This
is because the EV load demand is high at the
beginning of the recovery stage due to the EV bat-
tery energy supply during the disruption. Only the
critical EV loads should be charged once the feeder
is energized, and EV load curtailment should be
considered when necessary. The EV load should
be restored gradually to meet the EV customer trip
demand after the inelastic load in the system is
restored. The average SOC of EVs in the utility can
be increased using cost-based economics dispatch
after the majority of the generators and the system
original loads are recovered.

The above Steps 1, 2, 3.a and 3.b can be employed as
the operation strategy for EVCSs during restoration processes
under low utility-scale penetration of EVs and we here define
it as the EVCS Operation Strategy 3. If ks is the start time
during normal operating conditions to increase the EV load,
and k4 is the start time of the disruption, the optimization
problem to schedule the EV charging during the time period
starting from k3 to k4 can be represented by (1) — (11) and
(13). Equation (13) is a soft constraint enforcing the EVCS to
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Fig. 1. The ancillary restoration process by flexible loads such as EVs.

EVCS Operation Strategies

Normal Condition Abnormal Condition

Low EV penetration ngh EV penetration Low EV penetration ngh EV penetration

Fig. 2. The holistic framework of adaptive operation of EVCSs.

charge the EVs with maximum power capacity.

OFEV = ’Y(Lc(k4) - uzmw(k;; — k‘3))2 (13)

The Steps 1, 2, 3.a and 3.c is employed as the operation
strategy of EVCSs during restoration process under high
utility-scale penetration of EVs and we here define it as the
EVCS Operation Strategy 4.

IV. THE PROPOSED FRAMEWORK FOR ADAPTIVE
OPERATION OF EVCSs

The EVCSs needs to adjust the charging algorithms with
different EV penetration levels under normal operating condi-
tions. They also have to consider the EV charging algorithm
and restoration processes when interruptions occur. Hence,
the EVCS operator should consider all the conditions and
employ a suite of adaptive operation strategies to manage the
EVs as different scenarios unfold. The overall architecture of
a holistic solution proposed for EVCS adaptive operation is
demonstrated in Fig. 2. It requires the communication system
to be built, the EVs to be connected with smart meters, and the
interaction between the utility and the EVCSs to be enabled.
According to Fig. 2, only the operation strategies need to
be adjusted as different conditions unfold in the grid once
the communication system is established. This is achieved
at minimum effort for the EVCS operators to take in order
to meet the system requirements when transitioning through
different operating states over time.
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V. NUMERICAL CASE STUDIES

Real-life data is imported to simulate and evaluate the
effectiveness of the proposed algorithms under low utility-
scale penetration of EVs. The historical load profile of a feeder
in year 2015 is utilized. The feeder supplies 549 customers in
the US District of Columbia (DC), with the average feeder
load of 1.52 MW and yearly peak load of 3.28 MW. It is
corresponding to an overhead line feeder supplying majorly
the residential customers and a few commercial customers.
The modified IEEE 13-node test feeder is employed as the
typology for the test system, the one-line diagram of which is
illustrated in Fig. 3. We here assume the all loads are balanced
three-phase loads. The total load of the feeder is proportionally
distributed to the nodes. We also assume that the transformer
connected to the feeder is of 5 MVA capacity, and reverse
power flow is not allowed. The minimum net-load of the feeder
is 0.3 MW. The integrated EVCS and PV system is located
at node 635 (see Fig. 3), and connected to the grid through
a transformer. The weather data is taken from the National
Solar Radiation Database around Washington DC area [12].
The global horizontal irradiance data in year 2015 is used and
the overall PV system efficiency is assumed to be 20%. V¢
is set to 25 $/MWh. A PV system with a total capacity of 9
MW can generate the equivalent electricity satisfying yearly
energy demand in the feeder. The penetration level of PV in the
feeder is defined as the percentage of PV capacity to 9 MW PV
system. The hourly LMPs in year 2015 from the PJM market
are used as the pricing signals [13]. The uncoordinated PEV
load is acquired from [14] to assess the daily EV demand
and make a comparison with the coordinated EV charging
strategies. The scale factor for the EV load is 7. We assume
there are 2400 vehicles in the feeder based on the daily EV
demand. The EVCS in the feeder is assumed to charge at least
10% of the EV daily energy demand during the time period
of 9 am. to 9 p.m., and charge at least 30% during other
time intervals of the day. Then $; = 0.1 and S, = 0.3. The
charge/discharge rate of the EVCS is 6 MW with the efficiency
of 95%. c4 is set to 20 $/MWh.

A. Uncoordinated vs. Smart Charging Strategies

We assume a 2.7 MW PV system and 1440 EVs in the
feeder. Hence, the PV and EV penetration levels are 30% and
60%, respectively. The PV output and the feeder load profile
of a typical winter day in year 2015 is illustrated in Fig. 4.
Compared with the uncoordinated charging strategies in Fig.
5, the smart charging could follow the LMP and charge during
low-price time periods.

In a summer day when the PV power is nearly its output
capacity (see Fig. 6), the PV output is higher than the original
load demand. The uncoordinated charging of EVs will cause
a significant curtailment of PV generation during the day.
However, the proposed joint optimization mechanism will
schedule the EV loads by taking into account the LMP and to
decline the PV curtailment by following the PV output power.
The V2G is also used to minimize the cost of the integrated
EV-PV system without violating the grid constraints. The
results are illustrated in Fig. 7. The net-load is the aggregated
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Fig. 3. The modified IEEE 13-node test feeder with EVCS and PV system
located at node 635.
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Fig. 4. The feeder load profile and solar power output during a winter day.
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Fig. 5. Different EV load profiles under different charging algorithms in the
feeder, and the LMP profile of the feeder. The y axis corresponding to EV
load is on the left, and that of the LMP is on the right.

load of the feeder, and is equal to the total load including the
original load and the EV loads minus the PV actual output.

Considering the transformer upper constraint, the maximum
EV penetration in the case of an uncoordinated charging is
87.5% if one assumes no PV system in the feeder. With smart
charging mechanisms, the maximum EV penetration can be
100% and the EVs will be charging during low LMP time
intervals to meet the customer trip demand.
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Fig. 6. The feeder load profile and solar power output during a summer day.
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Fig. 7. The net load profile and the EV load profile of the feeder.

B. PV Curtailment under Different Levels of EV Penetration
in the Feeder

Without EVs, a 8.6% PV penetration level in the system
results in the minimum load of 0.3 MW in the feeder without
curtailment. The PV penetration level can increase to 16.6%
when there is 100% EV penetration with uncoordinated charg-
ing, if a 2-hour slightly overload of the transformer is allowed.
A small percentage of PV curtailment should be allowed and
smart charging algorithms should be employed by the EVCS
operators to increase the PV system integration capacity.

EVCSs with smart charging mechanisms can improve the
PV penetration significantly. The PV power curtailment and
the operation cost of the integrated EV-PV system in the
feeder are demonstrated in Fig. 8 and Fig. 9. The PV power
curtailment under different EV and PV penetration levels is
illustrated in Fig. 8. The intersection points between 2% PV
curtailment (dashed curve) and PV power curtailment curves
under different EV penetration levels indicate the marginal
conditions—the percentage of PV penetration level—to eco-
nomically invest on PV systems. The operational cost of the
combined system decreases almost linearly until more than 2%
of PV curtailment happens in Fig. 9. Hence, the PV penetration
level with 2% PV curtailment in Fig. 8 can be regarded as the
upper bound when seeking an economic investment under a
certain level of EV penetration.

C. Restoration Strategy of EVCSs under Low Utility-Scale
Penetration of EVs

With the same penetration level of PV and EVs as in Section
V-A, we apply the Strategy 3 to manage the operation of
the EVCSs under interruptions and in emergency operating
conditions. The PV output and load profile of a typical spring
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Fig. 8. PV energy curtailment against the penetration level of PV systems.
Each line represents the EV penetration level.
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Fig. 9. The operational cost of the integrated EV-PV system in the feeder
during 2015 vs. the penetration level of PV systems. Each line represents the
EV penetration level.

2

Original load profile
= == = Solar power
15
=
=
5 R
=
3
&
05 S
IERN - N
-= 7 \
0 —_— ‘ N L
0 5 10 15 20
Time (h)
Fig. 10. Feeder load profile and solar power output during a fall season day.

or fall day in year 2015 is illustrated in Fig. 10. We assume
that the EVs have the battery capacities of 70 kWh. At 12
a.m., all the EVs are assumed to be in the EVCSs and the
EVCSs have 40% aggregated SOC. At 1:00 a.m. the EVCS
receives the weather information reflecting a HILP storm that
is approaching the system during the day with a strong wind
profile, and the overhead distribution line connected to the
feeder is vulnerable to be broken. We assume that the main
grid fails to supply the feeder from 6:00 a.m. to 3:00 p.m.
during the day due to the inclement weather.

Table I presents the implementation results when Strategy

6

TABLE I
ENERGY CONSUMPTION AND SUPPLY OF THE EVCS DURING EACH
STAGE OF THE RESTORATION PROCESS

Stage schedule (MWh) actual (MWh)
Normal State 30 20.25
Disruption & Preparation -20.15 -10.16
Recovery Action 6 0
5
-Strategyl
ar l:lstrategy 3
3
B
s 2
21
&
0
16 17 18 19 20 21 22 23
1+
Sl Time (h)
Fig. 11. Different EV charging strategies during the ancillary restoration

process in the feeder. Positive values are the EV loads, and negative values
are the energy supplied by the EVCS to the load.

3 is applied during each stage of restoration. The EVCS wish
to charge as much energy to the EVs in Strategy 3 before
the interruption occurs so as to avoid the penalty of energy
interruption (during outages) in the feeder. The actual energy
charged to the EVs in the EVCSs, 20.25 MWh, is observed
less than the expected value due to the grid constraints. As
the repair time of the outage elements, i.e., the interruption
duration, depends on many factors, the actual energy supplied
by the EVCS may be more or less than the energy stored in
the EVs during the first stage. The EVCS needs to acquire
the SOC of EVs and reschedule the EV charging during the
Recovery Action stage. Following the interruption, there is
a 13.15 MWh energy that remains unused, which is higher
than the EVCS daily demand of 9.85 MWh. Hence, no EV
demand should be scheduled at the immediate hour following
the restoration process is accomplished.

The EV charging curve with and without Strategy 3 applied
is shown in Fig. 11. The operation strategy without considering
the interruptions will only follow the electricity pricing signals
before the interruption occurs, and then charge the other
part of EV demand following the interruption. The charging
Strategy 3, however, will charge more energy to the battery
before the interruption occurs, and supply the feeder during
the interruption.

VI. CONCLUSION

The increasing penetration of EVs will bring about po-
tentials to improve the maximum capacity of intermittent
renewable energies that the feeders can accommodate cost-
effectively. With the increasing penetration of EVs, the adap-
tive EVCS operation strategies enable the EVCSs to safely
operate in the modern distribution systems. The proposed
ancillary restoration framework utilizes the EVs as the grid
support resources to harnesses the EVs’ flexibility in providing
additional energy before the interruptions, provide energy to
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customers during interruptions, and facilitate recovery of EV
loads following the interruptions. The proposed framework
requires smart communication platforms that can help the
EVCS operator make effective decisions as different grid
operating conditions unfold over time.
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