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Abstract—Power grid operation continuously undergoes sev-
eral state transitions over time primarily driven by the internal
(e.g., equipment failures) and external (e.g., weather-driven faults,
and/or loading and generation variations) uncertainties. This
engenders an observation of different types of waveforms at the
measurement points (substations) in power systems captured by
the phasor measurement units (PMUs) and intelligent electronic
devices (IEDs) embedded with PMU functionality, e.g., digital
relays and fault recorders. The PMU should be, hence, equipped
with either one synchrophasor estimation algorithm (SEA) that is
accurate and robust to many different types of signals that may be
inputted at different time intervals across the network, or should
adaptively select the promising SEA, among an embedded suite
of algorithms, that can best capture an unfolding event. This
paper suggests a novel wavelet transform, the pseudo continuous
quadrature wavelet transform (PCQ-WT) algorithm, for online
power grid events and waveform classification, enabling design
or selection of the right SEA when exposed to different events,
thus resulting in a more accurate synchrophasor estimation and
heightened situational awareness spatially and temporally. Test
signals generated from different prevailing events in the IEEE
34-bus test system are applied to verify the robust performance
of the proposed classification approach.

Index Terms—Phasor Measurement Unit (PMU); Synchropha-
sor Estimation Algorithm (SEA); Waveform classification;
Wavelet transform.

I. INTRODUCTION

The wide deployment of the synchrophasor technology in
recent years has revolutionized the traditional measurement
setting in power grids into a new paradigm with high-
resolution measurements via which an enhanced system-wide
situational awareness is achieved. Synchrophasor measure-
ments, captured across the network via phasor measurement
units (PMUs), have transformed many applications, e.g., power
system model validation, state-estimation, dynamic stability,
real-time monitoring, protection, and control of the grid,
and post-event analysis, among many others [1]–[6]. IEEE
standard C37.118.1-2011 [7], has defined the expected PMU
outputs—i.e., magnitude, phase angle, frequency, and rate
of change of frequency (ROCOF)—and their corresponding
desirable accuracy which have been deemed to be sufficient
to capture the power grid steady-state and dynamic behaviour
when transitioning through different operating states over time
[8]. Depending on the type of the PMU, whether it is an
M-Class with highly-accurate measurement requirements for
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operation applications (e.g., state estimation) or P-Class with
high-speed low-latency requirements for real-time protection
and control applications (e.g., fault detection and location),
several algorithms have been proposed in the literature.

The synchrophasor estimation algorithms (SEA) are pri-
marily driven by mathematical approximations, e.g., Discrete
Fourier Transform (DFT) [9], Kalman filtering [10], adaptive
filtering [11], Newton approximations [12], zero-crossing tech-
niques [13], phase locked loops (PLL) [14], and many other
variations of these algorithms. In most cases, and irrespective
of the focused end-use applications, marketplace PMUs are
typically furnished with one of the above SEA tools, each
unleashing distinctive advantages and limitations, solely valid
to one or a few certain applications. Laboratory tests and
field observations have revealed how inefficient the PMU
measurements could be if this ”one-size-fits-all” approach
using only one SEA is applied in the face of different operating
states in the system to capture both static and dynamic features
and peculiarities [15]–[17]. The growing demand for high-
speed low-latency, and yet absolutely accurate, measurements
across the grid calls for a more efficient mechanism that can
selectively adapt to various evolving operating states by opting
the right SEA at the right time.

Recent research efforts have been directed toward dynamic
SEA through time-domain signal processing techniques. Such
algorithms, although revealing a promising performance under
slow-transient conditions (e.g., modulation) [18], quite fail in
the presence of abrupt changes in the waveforms (e.g.,faults)
[17]. In response, some references have proposed one single
PMU equipped with a suite of multiple algorithms inside, so
called P/M-Class PMU, which is deemed to be effective in
response to various prevailing conditions in the grid. Such
an approach requires an advanced feature extraction and
waveform classification mechanism that can accurately capture
and harness the signal peculiarities corresponding to different
events and unfolding conditions, and subsequently a selection
mechanism to choose the best SEA within the PMU depending
on the focused application and the measurement performance
requirements over time.

Waveforms in power grid typically reveal a certain pattern
with specific features and peculiarities driven by the system
operating conditions. For instance, phasor magnitudes and
phase angles go through step changes during faults [19]
and the measurements can be noisy [10]. Unbalanced load,
voltage surge or sag, harmonics, and frequency drift are also
common phenomena in electrical power networks [20]–[22].
Many research efforts can be found in the literature on pattern
recognition and waveform classification for power quality and
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fault analysis [23]–[28]. To the best of the authors’ knowl-
edge, however, only a few have been focused on waveform
classification for PMU applications and online event detec-
tion [3], [18]. In this paper, a pseudo continuous quadrature
wavelet transform (PCQ-WT) is proposed dedicated to feature
extraction and waveform classification of PMU input signals
coming from the power grid. The proposed PCQ-WT ensures a
fast feature extraction well within the standard requirements,
wide range of frequency coverage through a reduced num-
ber of scaling factors, and distinguished performance during
different events. The performance of the proposed PCQ-WT
approach has been tested and verified under various spatially
and temporally categorical conditions in a test system.

The rest of the paper is structured as follows. Section
II presents the problem statement on the waveform feature
extraction and classification through various signal transforms
such as continuous wavelet transform (CWT) and the pseudo-
continuous wavelet transform (PCWT). Section III introduces
the 1-D PCWT, and accordingly the novel PCQ-WT, with
the corresponding formulations. Numerical case studies and
performance evaluation results are reported in Section IV,
followed by the conclusions in Section V.

II. WAVEFORM FEATURE EXTRACTION AND
CLASSIFICATION

Short-time Fourier transform (STFT) and continuous
wavelet transform (CWT) are two most commonly used multi-
resolution waveform classification techniques in many engi-
neering disciplines [29], [30]. During the feature extraction
process, both transforms require a window (buffer) of samples
and therefore, a latency effect indeed exists. Selection of a
proper window size could minimize the latency effect, but
at the cost of trading off the frequency resolution. Note that
the frequency is actually estimated from the synchrophasors.
With no additional latency, the classification will enable an
adaptive selection of the SEA within a PMU, and hence, the
instantaneous synchrophasor measurement would be theoreti-
cally ensured.

The STFT can extract the waveform frequency spectrum
through the Fourier transform on a fixed sampling window.
Similarly, the CWT is achieved by assessing the correlations
between the signal of interest and the mother wavelet with
a continuous frequency scale factor. Figure 1 illustrates the
feature extraction results from both STFT (a and b) and
CWT (c and d). While it can be clearly observed that the
frequency accuracy of the STFT outperforms that of the
CWT, CWT stands out for fast feature extraction and event
detection. Therefore, CWT is focused in this paper as the main
waveform classification approach for online synchrophasor-
based applications.

A. Basic Waveform Representation

First, we define the basic representation of signals in the
power grid when transiting to different operating states. Since
PMU devices can be installed at any desired location (i.e.,
substation) in the network, three-phase or single-phase volt-
age and current signals can be captured. Ideally, the input

(a) STFT (b) STFT

(c) CWT (d) CWT

Fig. 1. Comparison of the STFT and Morlet CWT during: (a),(c) the steady-
state 60Hz and the 5th harmonic pollution; (b),(d) 5Hz frequency ramp.

waveforms to the PMUs are time-domain sinusoidal signals,
as represented in (1).

x(t) = A(t)cos

(
2π

∫ t

0

f(τ)dτ + φ(t)

)
(1)

where A(t), f(τ), φ(t) are, respectively, the instantaneous
magnitude, frequency, and phase angles. Since the input
waveform is captured from a one-phase electrical signal, the
waveform x(t) is a one-dimension (1-D) signal.

B. CWT and Pseudo-CWT (PCWT)

Wavelet transform is centered on the cross-correlation com-
putations between the signal of interest, x(t) in this paper, and
a designated wavelet, defined as follows:

Xω(a, b) =
1√
|a|

∫ ∞
−∞

x(t)Ψ(
t− b
a

)dt (2)

where Ψ(t) is the mother wavelet function and Ψ(t) is the
complex conjugate of Ψ(t); a and b are, respectively, the
scaling factor and the time shift; and Ψ( t−ba ) is one of the
”daughter wavelets” of Ψ(t) [31]. With different selections
of a and b, a set of daughter wavelets is then defined,
characterizing the correlations between the input signal x(t)
and the daughter wavelets. When proper intervals for the
continuous scaling factor along with the time shift are selected,
a continuous-wavelet transform (CWT) is achieved [32].

Real-time signal amplitude quantization and sampling are
nowadays very well developed and widely applied in differ-
ent disciplines. The continuous-time to discrete-time (C2D)
conversion will, however, sabotage the continuity of the real-
time signal. Mathematically, the daughter wavelets’ length or
the so called the wavelet window size is limited. And at the
same time, the scaling factor is finite due to the processing
capacity limitations of the computing hardware. Furthermore,
the scaling factors are obviously not continuous parameters
in practical settings of digital signal processing (DSP). More
importantly, shorter window size and less scaling factors will
reduce the feature extraction latency and the computational
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burden; however, the performance of the discrete wavelet
transform must not be compromised comparing to the continu-
ous time application. For all these reasons, the actual behavior
of the CWT is pseudo-continuous, even with less discrete
scaling factors used, but the performance needs to be close
to the discrete implementation of the CWT. Here, the pseudo-
CWT (PCWT) is defined as

Xω[a, b] =
1√
|a|

W−1∑
n=0

x[n]Ψ[
nTs − b

a
] (3)

where Ts is the sampling interval; W is the window length. In
contrast with the discrete wavelet transform (DWT)’s dyadic
increase of the scaling factor, the scaling factor increment in
the PCWT is preset to be linear, but still plotted in a reversed-
dyadic format. The central frequency of the daughter wavelet
has the following relationship with the scaling factor:

f = Fc/a (4)

where Fc is the central frequency of the mother wavelet [32].
Hence, as a increases, the position of the WT output decreases
in the frequency domain. In order to match the frequency
positive increment along the Y-axis, all scales in WT plots
illustrate a descending trend in all figures.

C. PCWT’s Feature Extraction Mechanism

The proposed waveform classification approach is centered
on the extraction of distinct features in the input power
waveform. To reveal the signal composition at any given
operating condition, the ”frequency spectrum” or the PCWT
output must be featured with a redundant range in order to
provide sufficient pattern information. Therefore, in addition
to the fundamental frequency, a proper selection of the central
frequency and a sufficient length of the scaling factor are
requisite. Strict mathematical derivations are pursued to find
the central frequency Fc and the scaling factors. To serve the
research focus on the feature extraction wavelet, Fc is chosen
arbitrarily from a frequency range higher than the fundamental
frequency, scaled down by a.

There are multiple mother wavelet families, and conse-
quently, different mother wavelets will yield distinct results.
Figure 2 demonstrates the performance of six mother wavelet
families on a steady-state 60Hz sinusoidal signal. Before
time t = 0, all waveform data are set to be zero. Figure.
2(a) and (d) reveal a relatively higher concentration of the
correlation strength by applying the Morlet and 4th–order
Gaussian wavelets, respectively. In contrast, Figure. 2(b) has
shown the widest spectrum, indicating a stronger capability
of the Haar wavelet in capturing frequency variations within
a range of interest—This is, however, not suitable for feature
extraction in steady-state conditions. All the frequency features
captured in Fig. 2 are plotted over time t.

In order to accurately follow the PCWT procedure, the
requisite buffer to perform the operation in (3) needs to wait
a time interval to be filled. A moving window approach is
pursued in this paper, application demonstration of which is
presented in Fig. 3. The distortions from time zero in all test
cases presented in Fig. 2 can be explained by the edge effect

(a) Morlet (b) Haar

(c) Meyer (d) Gaussian order 4

(e) Daubechies order 4 (f) Symlets order 4

Fig. 2. Output comparison of six different mother wavelet families on a 60Hz
sinusoidal waveform.

Fig. 3. Demonstration of the moving window approach in the PCWT applied
to the input waveform.

[33]. In order to compensate for the edge effect, the window
size can be chosen narrower, resulting in a smaller buffer
size that takes less time to be filled. This solution, however,
decreases the PCWT output resolution.

III. THE PROPOSED WAVELETS BASED ON THE PCWT

The proposed wavelets essentially perform a multi-
resolution correlation calculations as described in the previous
Section. From Fig. 2, one can see that the wavelet transform—
and PCWT—can generally provide the frequency information;
we, however, focus on the feature extraction of the power
waveforms. Such information can be then leveraged and
inputted to a selected synchrophasor estimation algorithm for
accurate measurements.



4

A. Proposed 1-D PCWT for Feature Extraction

Inspired by the band limited characteristic of the Shannon
wavelet, which can be applied to power network signals with
limited range of fundamental frequency, this paper proposes
a narrow-bandwidth wavelet algorithm. Note that the term
”feature” is here referred to a unique behaviour in a particular
event or phenomenon in dynamic power grids—e.g., frequency
and amplitude patterns. Analytic expression of the Shannon
wavelet is as follows [34], [35]:

Ψ(Shannon)(t) = γ
1
2

b sinc(πγbt)︸ ︷︷ ︸
Vanishing

Component

· cos(2πFct)︸ ︷︷ ︸
Periodic

Component

(5)

where γb is the desired bandwidth. As can be seen, this
wavelet expression is composed of a periodic and a vanishing
component in time. The wavelet is always featured with a finite
length in the time domain. As the period of the fundamental
signal and harmonics are those components of interest in
power grids, the periodic component is much preferred in the
mother wavelet. Furthermore, when the time deviates from
the center, the amplitude vanishes faster in time. The general
format of the proposed mother wavelet (a = 1) is

Ψ(P )(t) =

√
2

1 + cosh(πFct)︸ ︷︷ ︸
Vanishing

Component

· cos(2πFct)︸ ︷︷ ︸
Periodic

Component

. (6)

The Periodic Component is still the same as that in the Shan-
non wavelet; the proposed mother wavelet uses hyperbolic
function to drive the amplitude of daughter wavelet fading
faster at high frequency and slower at lower frequency; thus,
the fundamental component reveals more details shown in the
scaleogram. Before applying (6) into (2) to perform the WT,
the central frequency FC should satisfy the condition in (7).

Fc
max(a)

< f0 < Fc (7)

where f0 is the frequency of the signal of interest. The
proposed CWT algorithm applied to a sinusoidal waveform
assumes that the wavelet’s center is fixed at t = 0 on the
horizontal time axis, i.e b = 0, and the target sinusoidal
waveform is moving towards left hand side in Fig. 3. For
simplicity, we keep f0(t) constant, A(t) = 1, and φ(t) = 0,

the CWT can be then presented as follows.

X
(P )
ω|a,b=0 =

1√
a

∞∫
−∞

x(t)Ψ
(P )

(
t

a
)dt

=

√
2√
a

∞∫
−∞

cos(2πf0t)cos(
2πFc

a t)

1 + cosh(π Fc

a t)
dt

=

√
2√
a

∞∫
0

cos[2π(f0 + Fc

a )t] + cos[2π(f0 − Fc

a )t]

1 + (eπ
Fc
a t + e−π

Fc
a t)/2

dt

=

√
2√
a

∞∫
0

cos[2π(f0 + Fc

a )t] + cos[2π(f0 − Fc

a )t]

(eπ
Fc
2a t + e−π

Fc
2a t)2/2

dt

(8)

Converting the continuous-time structure of (8) to a discrete-
time form, the continuous scaling factors are also converted
to discrete with reduced number of elements—i.e., pseudo-
continuous— and the proposed PCWT algorithm for waveform
feature extraction is achieved, as presented in (9). The resulting
set of scaling factors can be eventually applied to the proposed
mother wavelet to form a wavelet bank. Such a wavelet bank
can be loaded into digital computing devices to perform the
proposed PCWT. In order to achieve a desired performance
of the proposed PCWT algorithm, the window size W must
have sufficient length. Analytically, the first summation will
tend to be very small as the periodic component of the signal
has a frequency of |f0+ Fc

a | � 0, resulting in small correlation
coefficients. Thus, the first summation plays less of an impact
on the energy ”spectrum” than the |f0 − Fc

a |, since,

|f0 +
Fc
a
| > |f0 −

Fc
a
| ≥ 0 (10)

when f0 = Fc/a, the daughter wavelet will result in the
highest correlation coefficients with respect to the waveform
dominating component. This will yield a maximum value of
the second summation function. Furthermore, the vanishing
component will confine the second summation within a rea-
sonable upper limit, thus the computing memory would not
overflow. The proposed mother wavelet and its decomposition
is illustrated in Fig. 4(a) while its daughter wavelets are
demonstrated in Fig. 4(b),(c).

B. Transformation of 1-D PCWT to the PCQ-WT

In three-phase power networks, the Clarke transform is
widely applied to convert the time-domain components of a
three-phase signal in an ABC-reference frame to components
in a stationary αβ0-frame [36]. The time-domain αβ compo-

X
(P )
ω|a,b =

1√
2a

W/2∑
n=0

cos[2π(f0 + Fc

a )Tsn]

(eπ
Fc
2a Tsn + e−π

Fc
2a Tsn)2/4

+
1√
2a

W/2∑
n=0

cos[2π(f0 − Fc

a )Tsn]

(eπ
Fc
2a Tsn + e−π

Fc
2a Tsn)2/4

=
1√
2a

W/2∑
n=0

cos[2π(f0 + Fc

a )Tsn]

cosh2(π Fc

2aTsn)
+

1√
2a

W/2∑
n=0

cos[2π(f0 − Fc

a )Tsn]

cosh2(π Fc

2aTsn)

(9)
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Fig. 4. Proposed wavelets for waveform online feature extraction; left figure:
spectrum; right figure: wavelet. (a) mother wavelet, (b) daughter wavelet with
scaling factor 11, (c) daughter wavelet with scaling factor 26.

nents will be utilized to generate a complex time signal as
presented in (11) and (12).

xαβ(t) = xα(t) + jxβ(t) (11)[
xα(t)
xβ(t)

]
=

[ 2
3 − 1

3 − 1
3

0
√
3
3 −

√
3
3

]xA(t)
xB(t)
xC(t)

 (12)

To have a complex rotating component, one can replace
the periodic component by a rotating phasor in (6), thus the
proposed PCQ-WT is achieved as presented in (13).

#»

Ψ(P )(t) =

√
2

1 + cosh(2πFct)
· ej2πFct (13)

Similar analytics from (9) can be applied to the proposed
PCQ-WT, which is

#»

X
(P )
ω|a,b=0 =

1√
2a

W/2∑
n=0

ej2π(f0−
Fc

a )Tsn

(eπ
Fc
2a Tsn + e−π

Fc
2a Tsn)2/4

=
1√
2a

W/2∑
n=0

ej2π(f0−
Fc

a )Tsn

cosh2(π Fc

2aTsn)

(14)

When f0 = Fc/a, the correlation coefficients at the numera-
tor reach their maximum value, i.e., unity. Hence, the complex
format of the proposed PCQ-WT focuses on the frequency of
interest, f0. The following Section will investigate the feature

Fig. 5. IEEE 34-Bus test system, with faults and switch locations. The
analyzed waveforms are captured at Bus 850.

extraction performance of the proposed wavelets: 1-D PCWT
and PCQ-WT.

IV. NUMERICAL CASE STUDIES AND WAVEFORM
FEATURE EXTRACTION PERFORMANCE EVALUATION

This paper proposed novel wavelet transforms to extract
and classify unique features of the input power waveforms
and correlate them with various events and grid operating
states, in an online setting. In order to evaluate the wavelet
performance, the frequency information and patterns extracted
from the input waveform are visualized and plotted in the time
domain. The evaluation is conducted on the following aspects:

1) Frequency Extraction Sensitivity: which focuses on
examining the frequency resolution of the proposed
wavelets where the corresponding pattern appears if
there is an off-nominal frequency.

2) Magnitude Sensitivity: which captures the voltage vari-
ation patterns such as voltage swelling and sags.

3) Unbalance Sensitivity: which focuses on PCQ-WT on
three-phase signals during load unbalance or faults.

The following test cases are studied. The time efficiency of the
proposed wavelets is evaluated by measuring the time when
the event occurs and that when a deformed pattern is detected.
• Test Case 1: 5Hz/s frequency ramp.
• Test Case 2: 2o phase jump.
• Test Case 3: 0.02pu magnitude jump.
• Test Case 4: Fault and sudden load change detection.
The IEEE 34-bus test system configuration is illustrated

in Fig. 5, where several fault locations are pinpointed in
red. Waveforms are captured at Bus 850 and the fault
types—single-line-to-ground (SLG), line-line (LL), line-line-
to-ground (LLG), and the 3-phase faults—are tabulated in
Table I. Each event described in Table I occurred solely at
one time, each lasting for 0.2 second.

The frequency response of the PCWT bank which is used
for feature extraction in the experiment is shown in Fig. 6,
where only 256 scaling factors are utilized to cover up to
3200Hz with sampling rate of Fs=9600Hz. Note that for PCQ-
WT, only the positive range of frequency is valid. Pattern
variations indicated in Fig. 7 demonstrate that the Test Case
1 event is captured within 0.02s and the proposed PCQ-WT
could extract a more obvious feature from the waveform than



6

TABLE I
DETAILED INFORMATION ON THE SIMULATED FAULTS AND SWITCH

SETTINGS IN THE IEEE 34-BUS TEST SYSTEM

(a) Fault Data

Fault # Type Resistance
F1 SLG 0.01 Ω
F2 LL 0.01 Ω
F3 LLG 0.01 Ω
F4 3φG 1 Ω

(b) Switch Settings

Breaker # Initial Status
BRK1 close
BRK2 open

* Only one event occurs at one time interval.

(a) (b)

Fig. 6. The impulse response of the PCWT bank in this studied experiment.
The frequency and gain is normalized into 1 in X-axis and Z-axis.

the 1-D PCWT. Similar observations can by found in Test
Case 2 and Test Case 3 in Fig. 8 and Fig. 9: the feature
corresponding to a phase and amplitude jump can also be
observed within one cycle which can be more clearly illus-
trated through the contours. In Test Case 2(b) and Test Case
3(b), the two plots demonstrate that both proposed wavelets
can distinguish patterns in different events: distortions in Test
Case 2 is symmetric while being asymmetric in Test Case 3.

(a)

(b)

Fig. 7. Simulation results in Test Case 1 where a frequency ramp starts at
t = 0.12s, (a) 1-D PCWT, (b) PCQ-WT.

(a)

(b)

Fig. 8. Simulation results in Test Case 2 where a phase jump occurs at
t = 0.12s, (a) contour of 1-D PCWT, (b) contour of the PCQ-WT.

(a)

(b)

Fig. 9. Simulation results in Test Case 3 where a magnitude jump occurs at
t = 0.12s, (a) contour of 1-D PCWT, (b) contour of the PCQ-WT.

The 1-D PCWT can still capture all the features in the
events that are normally hard to be observed. The reason lies
in the fact that the 1-D signal amplitude is not fixed over
time, thus there are always periodic energy concentrations in
1-D PCWT. One can realize, by comparing the 1-D feature
extraction approach in [18], that the proposed 1-D PCWT not
only reveals the features around fundamental frequency, but
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Fig. 10. Contour of the simulation results in Test Case 4 correlated with test events marked.

also those at high frequency range which are associated to the
event itself; this would potentially provide more details of the
event for the machine learning process to classify the patterns.

In the above dynamic performance tests on pattern extrac-
tion mechanism, both the proposed 1-D PCWT and PCQ-
WT can extract the features of the events within 20ms, given
that the phasor response time limit dictated by the IEEE
Std.C37.118.1a-2014 [37] in the presence of amplitude or
phase step changes is of two fundamental cycles(33ms). Note
that the maximum feature extraction latency (Test Case 1(a)) is
17ms. Consequently, the algorithm selection process must be
done within 16ms. For compliance, one must ensure that the
total time of this process and the remaining time for selecting
a sutiable algorithm obeys the standard limits.

During the simulated Test Case 4, the event analysis demon-
strated in Fig. 10 indicates that for different types and locations
of faults, the proposed PCQ-WT can successfully detect and
extract various features in the system. Since F1 is closer to
the measurement point at Bus 850 and F1 is an SLG fault, the
feature pattern is observed more obvious than that in the LL
and LLG fault scenarios in Test Case 5. The proposed PCQ-
WT is sensitive to the distance from measurement point and
the fault location. The 3-phase fault reveals the highest energy
concentration, reflecting a severe impact on the test system.
Note that the energy concentration during the normal operating
condition is much smaller than that under fault scenarios, thus
the extracted feature has much smaller value in the former
than that in the latter. This is demonstrated in blue in Fig. 10
at t = 0 to t = 1. A lost load is also detected at t = 5 and
extracted features show that restoration of a small portion of
the load is detected at t = 6. Finally, looking at the entire
time span, it can be concluded that the extracted features
and patterns are diverse, further highlighting the necessity and
promising performance of the proposed wavelet mechanism
for online feature extraction.

V. CONCLUSION

In this paper, new multi-resolution wavelet transforms were
introduced for online waveform classification in power sys-
tems applications. The waveform classification outcome, if
accomplished accurately and computationally-efficient, can be
leveraged in PMUs, and other IEDs with PMU functionality,

to select the best synchrophasor estimation algorithm that is
most compatible with the system operating condition during
which a measurement needs to be captured. The performance
of the proposed algorithms, in terms of both feature extraction
accuracy and time efficiency, was verified under different test
cases representing different operating conditions in the IEEE
34-bus test system. The suggested platform can be embedded
in PMUs and help in tracking and capturing the fast and
slow variations in the waveform frequency components in both
offline and online settings.
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