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Abstract—This paper proposes a distributionally robust
chance-constrained (DRCC) optimization model for optimal
topology control in power grids overwhelmed with significant
renewable uncertainties. A novel moment-based ambiguity set
is characterized to capture the renewable uncertainties with no
knowledge on the probability distributions of the random param-
eters. A distributionally robust optimization (DRO) formulation
is proposed to guarantee the robustness of the network topology
control plans against all uncertainty distributions defined within
the moment-based ambiguity set. The proposed model minimizes
the system operation cost by co-optimizing dispatch of the lower-
cost generating units and network topology—i.e., dynamically
harnessing the way how electricity flows through the system. In
order to solve the problem, the DRCC problem are reformulated
into a tractable mixed-integer second order cone programming
problem (MISOCP) which can be efficiently solved by off-the-
shelf solvers. Numerical results on the IEEE 118-bus test system
verify the effectiveness of the proposed network reconfiguration
methodology under uncertainties.

Index Terms—Chance-constrained programming; distribution-
ally robust optimization (DRO); optimal topology control; renew-
able; uncertainty characterization.

I. INTRODUCTION

Electric power transmission system has been traditionally

designed, planned, and operated with a fixed topological con-

figuration, characterizing its infrastructure as static assets. The

network topology changes only in the cases of (i) faults and

forced outages, (ii) maintenance operations on transmission

lines, (iii) seasonal switching actions, and (iv) other operator-

driven ad hoc circumstances. Power grid topology control

through transmission line switching harnesses the network

built-in flexibility by temporarily removing lines out of service

and changing the way how electricity flows through the grid.

Topological reconfiguration of the transmission grid brings

about potentials for a cost-effective operation and higher

economic benefits by enabling dispatch of the lower-cost

generating units along with a dynamically-routed electricity

flow [1]. Utilizing the network existing infrastructure with

minimum additional cost, network topology control has been

proven to be effective in emergency scenarios as well primarily

for enhancing the network reliability and resilience against a

sheer number of possible disruptions [2]–[5].

The increasing proliferation of uncertainties in power

grids—either through intermittent renewable generation port-

folios or stochastic load profiles—has introduced significant

challenges to today’s grid operation and control paradigms.

Such uncertainties, if not properly modeled and accounted for,

may change the underlying principles of the network topology

control optimization mechanisms and, at times, may render

this technology inefficient. Different approaches have been

proposed to tackle the grid uncertainties through characteriza-

tion, modeling, and uncertainty-driven formulations: some are

centered on deterministic assumptions for uncertain parame-

ters and may not result in accurate and reliable solutions [1],

[6] and some employ scenario-based stochastic programming

(SBSP) approaches [7]–[10] where the system uncertainties

are characterized through a finite number of scenarios. The

SBSP approach has been criticized in recent studies to be

computationally demanding as it requires a large number of

scenarios to precisely characterize the uncertainties [11]–[14].

Robust optimization (RO) is another approach in which a

suitable uncertainty space is defined for stochastic variables

through which the optimal solution can be found in the worst-
case uncertainty scenario [15]–[17]. While principally not

dependent to detailed knowledge of the probability distribu-

tions for uncertain variables (in contrast to the probabilistic

approaches) and computationally more attractive than the

previous alternatives (e.g., the SBSP approach), it often leads

to over-conservative solutions as it cannot effectively tackle

the degree of conservatism. Besides stochastic and robust

optimization techniques, distributionally robust optimization

(DRO) is an intermediate generalized variant of the clas-

sical RO frameworks [18]–[20], which treats the uncertain

parameters as random variables with an unknown probability

distribution. Different from the stochastic optimization, DRO

realistically accounts for all possible uncertainty distributions

according to the available uncertainty information (e.g., statis-

tical moments). Indeed, DRO assumes that the true distribution

lies in an ambiguity set and immunizes the operation strategies

against all distributions within the ambiguity set.

In this paper, power grid uncertainties (e.g., those driven

by the intermittent wind generation) are formulated and

incorporated in the optimal topology control optimization

through a distributionally robust chance constrained (DRCC)

programming approach, which is a powerful technique for

risk-informed decision making under uncertainty [21]. The
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uncertainties are characterized through a number of distri-

butionally robust (DR) chance constraints, ensuring that the

constraints subject to uncertainty will be satisfied with a

certain probability level prescribed by the decision maker.

The only challenge in dealing with the DRCC approach is

to reformulate the implicit DR chance constraints into explicit

constraints. In most of the existing research works (e.g., [22],

[23]), this reformulation is accomplished assuming that the

random variables involved in chance constraints (CCs) are

Gaussian distributed. In practice, however, this assumption is

quite unrealistic. Some others (e.g., [24], [25]) do not assume

any specific PDF for random variables, but propose and

employ approximate—i.e., not exact—reformulations of CCs,

which may adversely affect the reliability and dependability

of the chance-constrained programming (CCP) approach. We

first construct a moment-based ambiguity set which captures

all PDFs with the first two moments lying within its confidence

intervals. This ambiguity set is then utilized to derive the DR

variants of CCs, based on which, the chance constraint can be

processed with DRO. The optimal topology control problem is

eventually reformulated as a tractable mixed-integer second-

order cone programming (MISOCP) problem that is efficiently

solved using off-the-shelf optimization tools.

The proposed approach driven by the DRCC model (i) offers

an attractive computational demand, which in turn, enables

its application in large-scale systems with high-dimensional

uncertainties, (ii) requires limited knowledge on uncertainty

distributions of the random variables, (iii) immunizes the solu-

tion of the topology control problem against all the uncertainty

distributions defined within a moment-based ambiguity set,

and (iv) enables decision makers to efficiently control the

degree of conservatism for the solutions implementation.

II. MODELLING FORECAST UNCERTAINTY

Uncertainties arisen from intermittent wind is primarily

driven by the forecast errors. Wind forecast can be described

using continuous probability distributions. In this paper, wind

uncertainties ũ ∈ R
m are modeled as the sum of the forecasted

active power uf ∈ R
m and a random fluctuation δu:

ũ = uf + δu (1)

Full probability distribution of δu is generally unknown.

Nonetheless, it is assumed that at least partial information on

the probability distribution (e.g., the first moment μ and second

moment σW ∈ R
m×m) is available and can be estimated either

based on historical data or through forecasting methods. Given

this condition, (1) can be rewritten in terms of the expected

power generation u = uf + μ and a zero-mean fluctuating

component w ∈ R
m:

ũ = uf + μ+ w = u+ w (2)

Note that the mean μ is zero since the forecasts are based on

the expectation of ũ. The total power mismatch Ω ∈ R based

on the zero-fluctuation component can be defined as follows:

Ω =
∑
i∈κ

wi, with σΩ =
√
11,mσW1T

1,m (3)

where σΩ ∈ R is the standard deviation of ω and 11,m ∈
R

1×m is an m-dimensional row vector of ones. κ is the set

of nodes in the grid with uncertain wind generations.

In a secured power system operation, a balance between the

load demand and power generations should be maintained at

all times. With the forecast errors, the total power mismatch Ω
must be balanced by adjustments in outputs of the controllable

generation, reflecting the actions enforced by the automatic

generation control (AGC) [26]. In this paper, an affine control

policy is utilized in order to model the reserve activation in

each generating unit [27].

p̃G(Ω) = pg − αΩ (4)

where pG, p̃G(Ω) ∈ R
m represent the scheduled and actual

generation set-point, respectively, and α ∈ R
m is the vector

of participation factors illustrating the contribution of each

generating unit toward the power balance requisites. Note that

sum of the α elements must be one to ensure that any given

fluctuation Ω is balanced by the same amount Σi∈G(αiΩ) =
Ω. Here, the participation factor of each generating unit i is

defined by [28]:

αi =
pmax
G,i

σj∈g pmax
G,j

∀i ∈ g (5)

III. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED

TOPOLOGY CONTROL FORMULATION

Power system topology control optimization based on the

DC optimal power flow (DCOPF) foundations is formulated

with the main objective to minimize the system operation cost

[29]. Each transmission line is assigned a binary variable,

zij , representing its ON or OFF status, thereby enabling

an opportunity for a network topology reconfiguration. The

optimization problem would either return the results with no

line switching actions (no cost saving) or with some line

switching solutions with an improved objective function. In

order to incorporate the wind uncertainties, a DRCC model is

considered in order to guarantee that the constraints subject

to uncertainty will be satisfied with a certain probability. The

DRCC model will be then reformulated in such a way that the

constraints would be robust against all PDFs corresponding to

the random variables. We suggest a DRCC formulation of the

grid topology control optimization (DRCC-OTC) as follows:

TCϕ = min
pG

∑
i∈g

(cipG,i) (6)

∑
i∈N

(pG,i − di + ui) = 0 (7)

M (ij)

(
pG − αΩ+ u+ w − d

)
− Pij −

(1− zij)γ ≤ 0 ∀ij ∈ �

(8)

M (ij)

(
pG − αΩ+ u+ w − d

)
− Pij +

(1− zij)γ ≥ 0 ∀ij ∈ �

(9)
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∑
ij

(1− zij) ≤ ϕ (10)

inf
ν∈D

P

[
pG,i − αiΩ ≤ Pmax

G,i

]
≥ 1− ε ∀i ∈ g (11)

inf
ν∈D

P

[
pG,i − αiΩ ≥ Pmin

G,i

]
≥ 1− ε ∀i ∈ g (12)

inf
ν∈D

P

[
M (ij)

(
pG − αΩ+ u+ w − d

) ≤ Pmax
ij zij

]
≥ 1− ε ∀ij ∈ �

(13)

inf
ν∈D

P

[
M (ij)

(
pG − αΩ+ u+ w − d

) ≥ −Pmax
ij zij

]
≥ 1− ε ∀ij ∈ �

(14)

where, pG and zij are non-negative decision variables; υ is

the distribution of random variables; and D is a moment-

based ambiguity set. Note that the power flows pij on the

lines are considered based on the DC approximations [30];

M ∈ R
(l×m) is the matrix of power transfer distribution

factors (PTDFs); N and L denote the sets of nodes and

lines; �, m, and |g| ⊆ m are the number of lines, nodes,

and conventional generators, respectively; matrix M relates

the line flows to the nodal power injections and is expressed

as the susceptance matrix. Note that p − αΩ is the sum of

conventional generations; u+w represent the wind generation,

and d is demand power. Besides, γ in (8) and (9) is a large

number greater than or equal to Bij(θ
max
i −θmax

j ). We defined

ϕ as a generalized upper bound constraint in (10) through

which the number of open lines in the network is limited.

Objective function (6) minimizes the total generation costs

where ci ∈ R
m is the cost factor of conventional generators.

Power balance constraint is enforced in (7) in which ui is

the expected active power generation from uncertain sources.

Constraints (11), (12) express the generator outputs to remain

within the limits. Similarly, constrains (13), (14) limit the

power flows across the lines within their capacities. As the re-

serve activation depends on the random variable ω, constraints

(11)-(14) cannot be enforced deterministically. Instead, they

are formulated as chance constraints where each constraint is

required to stay within a predetermined confidence level 1−ε.
ε is a controllable risk parameter, enabling the decision maker

to adjust the degree of conservatism. The lower the ε is, the

more conservative the solutions are.

IV. ANALYTICS FOR DRCC REFORMULATION

Unfortunately, constraints (11)-(14) are implicit in nature,

making them very intractable and challenging to handle. Such

implicitness arises from the fact that the assessment of the

probability statements on the left-hand side of such constraints

is not determined due to the unknown PDFs of the random

variables. Unlike several number of reformulation efforts in

the past assuming a known Gausian distribution of random

variables [31], [22], we suggest a reformulation of DRCC

problem in which no such assumption is enforced [32]. The

explicit counterparts of DR chance constraints are proposed

according to [28] in such a way that DR chance constraints

are satisfied irrespective of the PDFs of the random variables.

In order to find a solution to the distributionally robust chance-

constrained optimal topology control (DRCC-OTC) problem,

constraints (11)-(14) must be reformulated to deterministic and

tractable constraints. To simplify, each constraint (11)-(14) can

be expressed as:

P

[
Ξ(pG) + Υ(pG)δu ≤ χ] ≥ 1− ε (15)

where Ξ(pG) ∈ R states the generation output or the line

flows with no forecast errors; Υ(pG) ∈ R
1×m is expressed

as functions of the decision variables by which the influence

of the forecast errors δu on the respective constraint can be

captured. χ is a constant which represents the generation or

line flow limit. Regardless of the exact expression for Υ(pG),
and for any distribution and dimension of the random vector

δu, the left hand side of (15) is a scalar random variable with

a mean μδ(pg) and variance σδ(pg) expressed as follows [28]:

μδ(pg) = Ξ(pG) + Υ(pG)μ (16)

σδ(pg) =
√
Υ(pG)ΣυΥ(pG)T = ||Υ(pG)

√
Συ||2 (17)

Hence, constraint (15) can be represented as:

inf P =

[
δ − μδ(pG)

σδ(pG)
<

χ− μδ(pG)

σδ(pG)

]
=

inf P

[
δn <

χ− μδ(pG)

σδ(pG)

]
≥ 1− ε ∀ν ∈ D

(18)

where the scaled random variable δn has a zero mean and

unit variance. Note that the distribution ν of δn must belong

to an ambiguity set which can be described as the family

of all distributions with the same structural properties—e.g.,

mean, variance, and co-variance [33]. By defining ΘD(k) as

the the worst-case probability distribution in the ambiguity set

D, equation (18) can be re-written as follows:

ΘD

(χ− μδ(pG)

σδ(pg)

) ≥ 1− ε (19)

Since the function ΘD(k) is increasing, it can be reformulated

as a well-defined inverse function:

Θ−1
D (k) = inf{k |ΘD(k) ≥ λ} (20)

(χ− μδ(pG)

σδ(pg)

) ≥ Θ−1
D (1− ε) (21)

Employing (16), (17), the CC (15) can be reformulated to the

following analytical expression for all PDFs that exist within

the ambiguity set:

Ξ(pG) ≤ χ−Υ(pG)μ−Θ−1
D (1− ε)||Υ(pG)

√
Συ||2 (22)

Characterization of the ambiguity set D directly depends on

the dominant source of the uncertainty, the forecast interval,

and the type and quality of available data. Among two main

types of the ambiguity sets in the literature—e.g., moment-

based ambiguity sets [34] and distance-based ambiguity sets
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[35], we use the moment-based ambiguity set with known mo-

ment information [34]. To reformulate (22) into a deterministic

counterpart, the set Λ containing all distributions with zero

mean and unit variance is defined in (24):

ΘΛ(ρ) = 1− sup
P∈Λ

P[δn ≥ ρ]

= 1−
{

1
1+ρ2 if ρ ≥ 0

1 otherwise

=

{
ρ2

1+ρ2 if ρ ≥ 0

0 otherwise

(23)

Taking the inverse of (23) gives the following equation:

Θ−1
Λ (1− ε) =

√
1− ε

ε
for 0 ≤ ε ≤ 1 (24)

Considering (22) and (24), the reformulation of (15) is

achieved as follows:

Ξ(pG) ≤ χ−Υ(pG)μ−Θ−1
Λ (1− ε) ||Υ(pG)

√
Σν ||2 (25)

The first part in (25), i.e., Ξ(pG) ≤ χ, is the nominal constraint

in which the uncertainty is entirely neglected; the second part,

Υ(pG)μ, is a modification factor related to the forecast error

bias μ; and the third part, Θ−1
Λ (1 − ε) ||Υ(pG)

√
Σν ||2, is a

security margin against the uncertainty. To sum up, the second

and the third parts can be interpreted as an adjustment of

the nominally available capacity to secure the CC against the

forecast deviations. Therefore, equation (25) will be satisfied

for all PDFs covered by the ambiguity set D. As a result,

DRCC problem is able to control the conservatism degree

and the robustness level of the solution by adjusting the risk

parameter ε in the decision making process.

According to the above discussions, constraints (11)-(14)

can be directly transferred into an equivalent deterministic

constraint as follows:

pG,i ≤ Pmax
G,i − αi11,mμ−

√
1− ε

ε

∥∥∥αi11,m

√
Σν

∥∥∥
2
∀i ∈ g

(26)

pG,i ≥ Pmin
G,i − αi11,mμ+

√
1− ε

ε

∥∥∥αi11,m

√
Σν

∥∥∥
2
∀i ∈ g

(27)

M ij(pG + uf − d) ≤ Pmax
ij zij −M ij(I − α11,m)μ

−
√

1− ε

ε

∥∥∥M ij(I − α11,m)
√

Σν

∥∥∥
2

∀ij ∈ �
(28)

M ij(pG + uf − d) ≥ −Pmax
ij zij −M ij(I − α11,m)μ

+

√
1− ε

ε

∥∥∥M ij(I − α11,m)
√

Σν

∥∥∥
2

∀ij ∈ �

(29)

where I ∈ R
m×m is the identity matrix and Σν =

eT (diag(Σ0)), in which e is the vector of all ones and Σ0

is the statistical co-variance of the forecast error associated

with the random variable. Therefore, such constraints can

be handled and tracked as a MISOCP model. Besides, the

forecast bias correction and the uncertainty margin on the

right hand side result in a reduction in the available output

power of each generating unit and the power flow through each

line. Thus, the higher the uncertainty margin, the lower the

violation probability and the higher the objective cost. The risk

parameter, ε, plays an important role to achieve a reasonable

trade-off between the security level against the forecast errors

and the objective cost function.

V. SIMULATION RESULTS AND DISCUSSIONS

In order to evaluate and verify the effectiveness of the

proposed DRCC-OTC formulation, a modified IEEE 118-bus

test system penetrated with wind generation is employed as

the test-bed. All simulations have been performed on a Laptop

with a 3.40 GHz Intel Core i7-2620 processor and 8 GB of

RAM using CPLEX 12.6.1 [36].

A. Test System Description

In the modified IEEE 118-bus test system, the cost functions

for the system generating units are modeled through linear

functions, network losses and reactive power are ignored (i.e.,

simulations are conducted in a DC setting), and the resistance

and shunt capacitance of transmission lines are assumed zero.

The generator variable costs and transmission line character-

istics are borrowed from [37], with the corresponding data

coming from the University of Washington Power System Test

Case Archive [38]. The system consists of 118 buses, 186

transmission lines (i.e., 186 binary variables), 19 conventional

generating units with a total capacity of 5859.2 MW, and 99

load buses with a total demand power of 4519 MW. As for

the wind power, a wind farm with the capacity of 2.6 percent

of the maximum system generation capacity is assumed to be

located at bus 111. The forecast error vector is the difference

between the mean of a 10-month historical wind data and the

corresponding actual data.

B. Discussions on Topology Control Solutions

We first investigate the DRCC-DCOPF problem in which

no transmission line switching action is allowed (ϕ = 0). This

is referred to as the ”base-case” scenario (DCOPF) where the

network configuration is fixed. The system total operation cost

in this case is achieved $1916.923 considering a risk parameter

of ε = 0.1, meaning that DR chance constraints must be

satisfied with the probability of 90%.

In the second scenario, we implement the DRCC-OTC

problem when constraint (10) is relaxed, i.e., the optimization

model can render an unconstrained number of lines to be

switched open. The optimal solution reveals that the system

cost is significantly improved by 30% (i.e., $575.27) over

the base-case scenario. In this case, 43 number of lines are

found open and this verifies the role of topology change for

an enhanced economic efficiency of the power grid.

In the third scenario, we limit the number of open lines by

enforcing constraint (10). Allowing only one transmission line

to be open (by adjusting ϕ = 1) would result in a lower system

operation cost and higher economic benefits compared to the

base-case scenario. In particular, by temporarily removing
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TABLE I
CHANGES IN GENERATION DISPATCH FOLLOWING LINE 133 SWITCHING

Generator
Bus

Output Change
[MW]

Generator Variable
Cost [$/MWh]

25 177.967 0.434
49 -112.606 0.467
87 -7.159 7.142

112 -57.402 2.173

TABLE II
TOPOLOGY CONTROL SOLUTIONS AND COST SAVINGS

Number of
Switchable Lines (ϕ)

Switching Lines
Percent

Cost Saving
Time
(Sec)

0 - - 2.4
1 133 8.671% 3.7
2 133, 152 18.42% 14.4
3 133, 152, 164 21.02% 18.5
4 142, 148, 150, 152 25.49% 53.2
5 128, 142, 148, 150, 152 27.43% 223

No restriction [...] 30% 20.6

transmission line 133 connecting bus 77 to bus 82 out of

service and by changing the way electricity flows in the net-

work, the system operation cost would decrease from $1916.92

(corresponding to the base-case condition) to $1763.97. This

economic benefit is achieved by co-optimizing the network

topology and generation dispatch. The changes in the output

power of the generating units are illustrated in Table I. One

can realize from Table I that some cheaper generating units

have increased their generation, while some more expensive

ones have seen a decrease in their generation portfolios. The

increased generation cost at bus 25 is $77.24 and the total cost

saving realized through contributions from several generating

units at buses 49, 87, and 112 is equivalent to $-228.4511.

When the risk parameter is set to ε = 0.1, the DRCC-OTC

optimization problem is simulated considering a flexible num-

ber of line switching possibilities through ϕ = {1, . . . , 5}. The

results on the optimal switching lines, total cost saving, and

the computational run-time for each scenario are demonstrated

in Table II. The results imply that switching a small number

of lines out of service can have a significant impact on the

economic dispatch of the generating units and consequently

the cost saving in the network operation (e.g., switching out

transmission line 133 and line 152 will result in 18.42%

cost saving compared to the base-case operation scenario);

nonetheless, a large number of lines would not necessarily

result in an enormous cost saving. For instance, it is observed

that there is not a significant difference in the total cost saving

when ϕ changes from 3 to 5.

C. Discussions on the Proposed DRCC-OTC Model

In this section, we demonstrate that the conservatism degree

of the optimal topology control solutions and the realized

economic benefits are highly dependent to the risk parameter

ε. In other words, the smaller the ε is, the more conservative

the solution and the higher system operation cost will be. It

can be shown that selecting various values of risk parameter

Fig. 1. System cost with different ε.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT TEST CASES FROM THE

VIEWPOINT OF SYSTEM OPERATION COST

Test Cases TC#1 TC#2 TC#3 TC#4
1 – ε(%) N/A N/A 85 95 85 95
System
Cost ($)

1644 1455 1809 2155 1674 1898

ε will result in different topology control solutions with

different cost savings. The system operation cost considering

ϕ = 1 with different risk parameters ε, ranging from 0.15,

0.13, 0.11, 0.09, 0.07 and 0.05, are summarized in Fig. 1.

One can realize from the results presented in this figure

that the wind generation uncertainty can be tackled in the

grid topology control decision making process by adjusting

the risk parameter: the smaller the ε is, the higher system

operation cost will be. Besides, according to Fig. 1, the

marginal cost would increase remarkably when parameter ε
decreases from 0.07 to 0.05, reflecting that the marginal cost

increases as the confidence level (1− ε) increases. In practice,

the risk parameter should be selected properly in order to

avoid the significant costs imposed to the grid operation when

a super-strict conservative solution is approached. In order to

demonstrate how considering DRCC-OTC model will result in

a higher system operation cost compared to the deterministic

OTC model (base-case scenario), we consider and study four

test cases as follows:

• Test Case 1: Deterministic model in which transmission

lines are not switchable and the renewable uncertainties

are totally ignored.

• Test Case 2: Deterministic OTC model in which only one

transmission line is allowed to be switched off the grid

and the renewable uncertainties are totally ignored.

• Test Case 3: DRCC model in which the uncertainty

distributions are assumed unknown and transmission lines

are considered not switchable.

• Test Case 4: DRCC-OTC model in which the uncertainty

distributions are assumed unknown and only one trans-

mission line is allowed to be switched off the grid.

Table III compares the system operation costs evaluated in

different studied test cases. One can see from Table III that all

DRCC solutions have resulted in a higher operation cost com-
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pared to their deterministic counterparts, reflecting the role of

wind uncertainties in the DCOPF decision making. Moreover,

if the number of switchable lines ϕ changes from 0 to 1, the

system cost decreases in both deterministic and DRCC-OTC

formulations, resulting in a significant cost saving.

VI. CONCLUSION

In this paper, a novel DRCC-OTC optimization model was

proposed and formulated which could well capture the wind

power uncertainties on the topology control decisions in power

grid. The proposed model assumes no prior knowledge of

the uncertainty distribution functions for the random vari-

ables and parameters. Simulation results demonstrated the

potentially-high cost saving of the topology control practice

in uncertainty-hosted power grids by harnessing the network

existing infrastructure. We also demonstrated how the pro-

posed decision making model under uncertainty is able to

significantly increase the solution robustness; unlike the robust

optimization models, a decision maker can efficiently harness

the conservatism degree of the solution by adjusting a risk

parameter embedded in the proposed DRCC-OTC formulation.

Real-world application of the proposed approach should

consider the N–1 security criterion. Future research may take

into account such security constraints that may otherwise

hinder its practical implementation.
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