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Abstract—This paper presents a probabilistic formulation and
solution technique for the application of DC optimal power
flow (DCOPF)-based network topology control through the
transmission line switching strategies. Efficient utilization of the
point estimation method (PEM) is pursued to model the system
uncertainties, i.e., the stochastic load profile and the intermittent
renewable generation. In order to address the computational
effectiveness of the suggested probabilistic methodology, the PEM
formulation is harnessed by a scenario reduction approach to
capture the correlations of the system uncertainties, thereby
achieving a more robust and faster operation solution for day-
ahead and real-time applications. The proposed approach is
applied to a modified IEEE 118-bus test system, where it
demonstrates its attractive performance under different test
scenarios.

Index Terms—Correlation; network topology control; proba-
bilistic; switching; uncertainty.

NOMENCLATURE

A. Sets

n ∈ ΩB Set of system buses.
g ∈ ΩG Set of system generating units.
k ∈ ΩL Set of system transmission lines.
z ∈ ΩZ Set of uncertain variables.

B. Variables and Functions

fX(.) Probability density function of variable X.

GCt Expected total system generation dispatch cost
probabilistically realized at time t.

GW Output power of a wind turbine (in MW).
PDn

Vector of demand (in MW) at load bus n.

P tdn Expected active power of bus n at time t.

P tgn Expected power output of generator g at bus
n at time t.

PWind
g,n Wind generation output at bus n.
P tknm Power flow through transmission line k (con-

necting bus n to m) at time t.
Pz,i, λz,i Probability and Skewness of concentration i

for random variable k.
υ Wind speed (m/s).
X,Y Vectors of random input and output variables.
αk Switch action for transmission line k (1: no

switch, 0: switch).
θn Voltage angle at bus n.
x(.), (.) Concentrations of X.

σx, µx Standard deviation and mean value of random
variable x.

J(.) Joint distribution function of random vari-
ables.

C. Dual Variables

η Lagrange multipliers for equality constraints.
π Lagrange multipliers for inequality con-

straints.

D. Parameters

Bk Susceptance of transmission link k.
cgn Linear generation cost of generating units g at

bus n.
E(.) Expected value.
K,K

′
,K

′′
Parameters of wind turbines.

Mk Big-M value corresponding to transmission
line k.

Pmingn , Pmaxgn Minimum and maximum generation limit of
generator g at bus n.

Pmink , Pmaxk Minimum and maximum limit on the power
flow of transmission line k.

Pr Rated power of a wind turbine (in MW).
υi, υr, υo Cut-in, rated, and cut-out wind speed (m/s).
r Number of PEM input random variables.
w(.), (.) Weighting factor.
ξ(.), (.) Location of concentrations.
θminn , θmaxn Minimum and maximum voltage angle at bus

n.
ψ, β Shaping and scaling coefficients of the

Weibull probability distribution.

I. INTRODUCTION

POWER system topology control or transmission line
switching (TLS) has been recognized, in theory and

practice, as a viable solution in hour- and day-ahead operations
of electric transmission power grids [1], [2]. Utilizing the net-
work existing infrastructure during the grid normal operating
conditions, TLS results in a notable operational cost reduction.
TLS can be also approached as a corrective action for power
grid reliability improvement during critical contingencies [3],
mitigation of voltage violations [4] and line overloads [5],
ensuring system security [6], congestion management [7], and
load outage recovery [8], [9]. Continuous variations in the
electricity demand and the inherent uncertainties in renewable
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energy resources, if not modeled and handled properly, may
compromise the application and attractiveness of the TLS
technology in real-world practices.

In the past few decades, an eminent number of contribu-
tions have been recorded on hypothetical foundations with
deterministic models and formulations for TLS applications
in modern power transmission systems, primarily to achieve
higher economic benefits and financial gains [10]–[14]. AC
formulation of the topology control optimization is introduced
in [15]. The effect of deterministic TLS on various electricity
market features, with and without taking into account the N-1
reliability criterion, were investigated in [16], [17]. Heuristic
optimization models to handle the computational complexities
of the large-scale TLS optimization problem are proposed in
[18]–[20]. In dealing with the system uncertainties in TLS
formulations, [21] studies a deterministic approximation with
chance-constrained formulation for topology control deploy-
ment in power systems primarily to accommodate higher
utilization of wind generation. Robust optimization, where
only the worst case uncertainty scenario is taken into account
resulting in the most conservative TLS solutions, is suggested
in [22]. For applications to large-scale power grids in presence
of a significant number of system uncertainties (stochastic load
and intermittent renewables), a manageable-size and tractable
formulation based on robust optimization models may not be
computationally feasible.

To the best of the authors’ knowledge, there has been limited
effort on modeling and incorporating the correlation of system
uncertainties into the TLS optimization formulations. This
paper puts forward a unique perspective to the conventional
deterministic TLS optimization formulations. This paper (i)
introduces a probabilistic topology control formulation that
can capture major uncertainties in the grid and stochastically
assimilate such probabilistic features in network topology
control optimization and (ii) implements a scenario reduction
technique driven by the correlation of system uncertainties
to make this stochastic optimization model computationally
friendly and tractable.

The rest of the paper is organized as follows. Section
II presents background information on the topology control
formulations for economic benefits. Section III introduces the
proposed probabilistic optimization problem and the solution
technique with the corresponding mathematical formulations.
Section IV presents the numerical case studies and simulation
results, followed by the paper conclusions in Section V.

II. POWER SYSTEM TOPOLOGY CONTROL

A. Deterministic TLS Models and Formulations
Deterministic transmission line switching (DTLS) formu-

lations assume that renewable generations and loads are all
known at a given time instant with accurate forecasts available
[23]. The system uncertainties are neither modeled nor incor-
porated. Typical formulations are based on DC Optimal Power
Flow (DCOPF) in hour-ahead or day-ahead applications and
results in system minimum-cost solutions with transmission
lines switching statuses. DTLS optimization can be also mod-
eled in an AC setting where the solutions are more accurate,
while the computational burden is more extensive.

B. Probabilistic TLS Models and Formulations

Probabilistic analysis is becoming increasingly important
since (i) deterministic analysis cannot fully disclose the state of
the system and (ii) many random distortions or uncertainties
arisen from the measurement errors, forecasting errors, etc.
exist. Uncertainties driven by renewable portfolios and the load
variability are modeled in the probabilistic transmission line
switching (PTLS) formulations. Such probabilistic DCOPF-
based optimization models are developed to find the optimal
hour-ahead solution for network topology and generation
dispatch that result in significant economic savings. In such
formulations, uncertainties should be first modeled and char-
acterized, then embedded into the PTLS optimization models.

1) Uncertainty Characterization of Renewables and Loads:
Probability density function (PDF) and historical data are
employed in this paper to model the uncertainties driven by the
high penetration of wind generation and the variable behavior
of loads in the system. However, other approaches such as
time series, artificial neural network, and regression techniques
can be used to serve the same goal [24], [25]. The hourly
wind speed is modeled by a Weibull probability distribution
with the PDF expressed in (1) [26]. The model captures the
sequential characteristic of the wind velocity and its impact
on the output power of wind turbines. It has been proven that
(1) gives a fairly applicable and accurate characterization of
the wind speed [26], [27]. The PDF parameters are statistically
estimated using the historical wind speed data by applying the
curve fitting methods and maximum likelihood estimations.
The output power of the wind generator is probabilistically
calculated as a function of wind speed, formulated in (2).

fv(v) =

(
ψ

β

)(
v

β

)ψ−1

e
−

(
v
β

)ψ
0 ≤ v ≤ ∞ (1)

Gw =


0 0 ≤ v ≤ vi, v > vo
(K +K

′ × v +K
′′ × v2)× Pr vi ≤ v ≤ vr

Pr vr ≤ v ≤ ∞
(2)

The load in the system is also another source of uncertainty,
driven by many spatiotemporal variables, e.g., time, season,
weather condition, electricity price, etc. The load uncertainties
are modeled in this paper through a Gaussian probability
distribution with the PDF in (3).

fPD
(PD) =

1√
2πσ2

PD

exp

[
− (PD − µPD

)2

2σ2
PD

]
(3)

2) PTLS Optimization Formulation: Performing a DCOPF-
based DTLS optimization for every combination of the genera-
tion, load, and network topology is not viable or computation-
ally intensive. The effective application of the Point Estimate
Method (PEM) is pursued in this paper to probabilistically
model the TLS formulation. Over the other probabilistic
techniques [28], PEM is selected due to (i) its high level of
accuracy, (ii) its acceptable computational requirements, and
(iii) its success record of being implemented in various disci-
plines. PEM helps effectively capturing the impact of uncertain



input variables and the propagation of such uncertainties over
the output parameters. The vectors of the input and output
random variables are characterized through nonlinear functions
presented in (4)-(6), respectively.

X =
[
PWind
g,n , PDn

]
(4)

Y = h(X) = h(x1, x2, ...xn) (5)

Y =
[
η, π,GCt

]
(6)

The probabilistic formulation of the DCOPF-based topology
control optimization, so called PTLS, is proposed and pre-
sented in (7), subject to several system and security constraints
in (8)-(13) [14].

minGCt =
∑

g∈ΩG,n∈ΩB

cgnP tgn (7)

pmingn ≤ P tgn ≤ Pmaxgn ∀g ∈ ΩG (8)

Pmink .αk ≤ P tknm ≤ Pmaxk .αk ∀k ∈ ΩLαk (9)∑
g∈ΩG

P tgn −
∑
m∈ΩB

P tknm =
∑
d∈ΩD

P tdn ∀n ∈ ΩB (10)

Bk.(θn − θm)− P tknm + (1− αk).Mk ≥ 0 ∀k ∈ ΩL (11)

Bk.(θn − θm)− P tknm − (1− αk).Mk ≤ 0 ∀k ∈ ΩL (12)

αk ∈ {0, 1} ∀k ∈ ΩL (13)

Constraint (8) limits the output power of generating unit
g at node n to its physical capacities. The power flow
across transmission line k is limited within the minimum and
maximum line capacities in (9). Constraint (10) enforces the
power balance at each node. Kirchhoffs laws are incorporated
in (11) and (12). An integer variable is introduced in constraint
(13) reflecting the status (ON/OFF) of transmission line k in
the system. Parameter Mk is a large number, which is used to
make the constraints non-binding and relax the one related to
the Kirchhoffs laws when a line is removed regardless of the
difference in the bus phase angles [14]. Mk is selected by the
user in the range of | BK(θmax− θmin |. In order to limit the
number of open lines, χ is introduced in (14).∑

k

(1− αk) ≤ χ k ∈ ΩL (14)

III. THE PROPOSED METHODOLOGY

Considering the probability distributions allocated to system
uncertain variables, the PEM decomposes (5) into several sub
problems by taking into consideration only 2n+1 deterministic
values for each uncertain variable located on the right and left
side of the mean value. As a result, the PTLS optimization
(7)-(13) is simulated 2n + 1 times for each given set of the
uncertain variables, while the other variables are kept constant
at their mean values. The 2n+ 1 values can be selected either
symmetrically or asymmetric around the mean value [28].
Eventually, the PTLS formulation will result in the probability
distribution functions (PDF) for the system generation dispatch
cost and the most repeated status of each transmission line over
the studied probabilistic scenarios.

A. Point Estimation Method (PEM)

Even though PEM is analytically accurate and has been
successfully applied to many problems in different disciplines,
there are several limitations that can constrain its application
to large-scale problems. Three main limitations are as follows
[29]: (i) for every selected point in the input vector of random
variables, it is a must that the Taylor series of the Z function
converge; (ii) infinite terms that exist in the Taylor series and
may not match the real dataset in real-world applications; and
(iii) only the information regarding the input random variables
is required to assess the locations and weighting factors which
are independent from the function Z.

1) 2n+1 PEM Scheme: The derivations for the 2n+1 PEM
scheme in dealing with a multivariate problem (with multiple
random variables) are presented in the following steps [29]:

Step 1: Take the Riemann-Stieltjes integral for the joint
distribution function J(X), where X is a vector of X =
(x1, x2, x3, ..., xn). Mathematically, all PEMs will approxi-
mate the integral through a weighted sum of several function
values assessed at a few selected points of the input random
variables X .

E(Zk) =

∫
D

F k(X)dJ(X) (15)

Step 2: Apply the Taylor series to expand the Z = F (X)
at the mean µt value of the vector X, where each random
variable of X is independent. One can, hence, get:

Z =
∞∑

m1=0

...
∞∑

mn=0

(x1 − µ1)m1 ...(xn − µn)mn

m1! ...mn!

.
(
∂(m1+...+mn)F

∂xm1
1 ...∂xmn

n

)
(µ1, ..., µn)

(16)

Step 3: µz can be written as in (17), if each value of X in
(16) converges to F (X) :

µz = E(F (X)) =

∫
D

F (x)dJ(x) (17)

=
∞∑

m1=0

...
∞∑

mn=0

λ1,m1
σm1

1 ...λn,mn
σmn
n

m1! ...mn!

.
(
∂(m1+...+mn)F

∂xm1
1 ...∂xmn

n

)
(µ1, ..., µn)

(18)

Step 4: Let F (X) be F (µ1, ..., µt−1, x, µt+1, ..., µn). The
only variable is then Xt, while the other parameters are
constant. Applying the Taylor series again, one gets:

ht(x) = ht(µt) +
∞∑
i=1

1

i!
h

(i)
t (µt)(x− µt)i (19)

Step 5: Set ξt,1 and ξt,2 as the values to be determined, and
set ξt,3 to be zero. We then define:

S =
n∑
t=1

(wt,1ht(xt,1) + wt,2ht(xt,2) + wt,3ht(µt)) (20)



(21)

= F (µ1, µ2, ..., µn)
n∑
t=1

wt,3

+
∞∑
i=1

n∑
t=1

1

i!
h

(i)
t (µt)(wt,1ξ

i
t,1 + wt,2ξ

i
t,2)σit

Step 6: Both series, S and µz , are formed in a similar format.
Such a similarity makes it possible to approximate µz using
S by matching the first few terms. Then, set the following:

n∑
t=1

(wt,1 + wt,2 + wt,3) = 1 (22)

wt,1ξ
i
t,1 +wt,2ξ

i
t,2 = λt,i i = 1, 2, 3, 4 t = 1, 2, ..., n (23)

and assuming an equal probability for all variables Xt [30],

(wt,1 + wt,2 + wt,3) =
1

n
, t = 1, 2, ..., n (24)

Step 7: Simultaneously solving (23) and (24) for random
variable Xt(t = 1, 2, 3, ..., n), the standard location and
corresponding wight factors are found as follows:

ξt,k =


λt,3

2 + +(−1)3−k
√
λt,4 − 3

4λ
2
t,3, k = 1, 2

0, k = 3
(25)

wt,k =


(−1)3−k 1

ξt,k(ξt,1−ξt,2 , k = 1, 2

1
n −

1
λt,4−λ2

t,3
, k = 3

(26)

Further details on the mathematical formulations above can
be found in [29], [30].

2) Two-Point Estimation Method (2-PEM): In this paper,
the application of a 2-point PEM (2-PEM) is pursued, where
n is selected to be two sample points of the input random
variable, one located after and the other before its mean value.
Figure 1 illustrates the basic procedure in a 2-PEM algorithm.
The following formulations are derived to implement the 2-
PEM algorithm for probabilistic TLS optimization as follows
[28], [14]: first, the requisite variables for the 2-PEM algorithm
are initialized as presented in (27a) and (27b).

E(Y )(1) = 0 (27a)

E(Y 2)(1) = 0 (27b)

Then, the location and probability of concentrations are
calculated through (28a)-(28d)

ξz,1 =
λz,3

2
+

√
r + (

λz,3
2

)2 ∀z ∈ ΩZ (28a)

ξz,2 =
λz,3

2
−
√
r + (

λz,3
2

)2 ∀z ∈ ΩZ (28b)

Pz,1 =
−ξz,2

2r.
√
r + (

λz,3

2 )2

∀z ∈ ΩZ (28c)

Pz,2 =
−ξz,1

2r.
√
r + (

λz,3

2 )2

∀z ∈ ΩZ (28d)

Fig. 1. Basic procedure of the PEM algorithm [31].

One can then calculate the two concentrations xz,1 and xz,2
using the following equations:

xz,1 = µx, z + ξz,1.σx, z (29a)
xz,2 = µx, z + ξz,2.σx, z (29b)

The next step is to run the deterministic TLS optimization
with respect to the vector X for concentrations xz,1 and xz,2:

X = [µz,1, µz,2, ..., xz,i, ..., µz,r] i = 1, 2 (30)

The following equations are then updated:

E(Y )(z+1) ∼= E(Y )(z) +
2∑
i=1

Pz,i.h(X) (31a)

E(Y 2)(z+1) ∼= E(Y 2)(z) +
2∑
i=1

Pz,i.h
2(X) (31b)



TABLE I
12-HOUR TIME-SERIES DATA OF UNCERTAIN WIND PATTERNS AND

LOAD PROFILES

Time P w P d(1) P d(2) Time P w P d(1) P d(2)
1 40 277 317 7 55 307 288
2 80 250 319 8 65 309 260
3 70 230 330 9 100 318 250
4 30 350 270 10 90 285 330
5 35 300 290 11 70 270 320
6 90 200 255 12 45 266 210

And finally, the expected value and the associated standard
deviation of the output variables are found in (32):

µY = E(Y ) (32a)

σY =
√
E(Y 2)− E2(Y ) (32b)

B. Correlation of Uncertainties and Scenario Reduction

If focusing on the conventional procedure in a 2n+1 PEM
(or 2-PEM), 2n + 1 (or 2) number of scenarios are gener-
ated for each random variable and the DTLS optimization
problem should run for 2n+1 (or 2) times concerning the
random variable of interest. As the number of random input
variables increases, the number of required DTLS simulation
scenarios exponentially increases. All generated scenarios are
assigned an equal realization probability of 1/τ . Considering
the implementation requirements of the PTLS optimization in
large-scale power grids with many random variables and in
an operational time-frame (hourly), a dimensionality reduction
technique is needed to handle the sheer number of possible
scenarios, making it computationally attractive.

A simple, yet efficient, scenario reduction technique is
employed in this paper. A two-dimensional matrix D, where
D ∈ R(NR+1)×τ

+ , is generated first, representing the random
input variables, i.e., the intermittent generation and stochastic
load profiles. The length of the data is considered equal to τ ,
and each row in matrix D represents a particular dataset for the
generation or load. The maximum and minimum values will be
evaluated in each row of the matrix D, and all the other values
between the maximum and minimum values are distributed
into Bi number of bins, where i ∈ [1, 2, 3, ..., (NR + 1)]. The
number of bins B is here arbitrarily selected and the axis
of each bin is (NR + 1). Each bin is here representing one
scenario, where the probability of each scenario is the number
of counts inside the bin divided by the total number of the
data points. The number of cells in each array is assigned a
boundary of τ , reflecting the fact that at most τ number of
cells is allocated values greater than zero [32].

An illustrative example is provided here to demonstrate
the procedure of the scenario reduction technique. Table III
presents 12-hour time series corresponding to a 120 MW
wind generator Pw and two loads (Pd(1) and Pd(2)). The
maximum and minimum values for the wind generation and
the loads are [30-100] MW, [200-350] MW, and [211-330]
MW, respectively. Each time series is normalized with respect
to its corresponding maximum value. Three dimensional bins
(3×3) should be set up optionally, representing the 3 number
of random inputs variables (load 1, load 2, and the wind
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Fig. 2. The generated three-dimensional bins for scenario reduction.

generation), respectively. Each normalized value is distributed
into the associated bin, and the number of observed values that
fall in each bin is counted. Note that since the three-dimension
bins are in form of a 3 × 3 × 3 array, the maximum number
of possible scenarios is 27 [32].

Figure 2 illustrates the counted number of data points in
each bin. The middle cell in load 1 direction shows that
the load 1 varies between 70% to 90% and load 2 changes
between 0% to 70% of their maximum values, while the
wind generation is 40% to 70% of its capacity. Note that this
observation occurs in one particular hour (in 12 hours). The
probability of each scenario is the value of each cell divided
by the number of total hours (e.g., 1 by 12 for this cell).

IV. NUMERICAL CASE STUDIES: MODIFIED IEEE
118-BUS TEST SYSTEM

A. System Descriptions, Data, and Assumptions

The proposed approach is implemented on the IEEE 118-
bus test system which consists of 185 transmission lines and
19 generating units (see Fig. 3) with 6859.2 MW installed
capacity and a peak demand of 6000 MW. All system data
(i.e., the hourly generation and load profiles, historical wind
data, transmission line parameters, etc.) are provided in [33].

B. Results and Discussions

In order to demonstrate the performance of the suggested
PTLS optimization and the solution technique, four different
test cases (TC) are studied: TC#1 is the base-case study in
which a deterministic OPF is performed with no topology con-
trol action allowed. TC2 and TC3 represent the cases in which
DTLS (with known and accurate forecasts available, thereby
solving a deterministic optimization) and PTLS (uncertainties
are modeled) are performed, respectively. In TC3, 101 input
random variables (2 wind generating units and 99 loads) are
considered, resulting in 202 scenarios probabilistically handled
via the 2-PEM. In TC4, the scenario reduction technique is
applied to the PTLS optimization. The optimization problem
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Fig. 3. The IEEE 118-bus test system configuration.

in all cases is run in General Algebraic Modeling System
(GAMS) environment, using a Dell PowerEdge R815 with 4
AMD Opteron 6174 Processors (48 2.2 GHz cores) and 256
GB of Memory running CentOS 5.7.

Simulation results, in terms of the system operation cost, the
switching solutions, and the computational times in different
test cases are presented in Table II. Comparing the results
in TC2 and TC3 with the base-case TC1, one can easily
observe the economic advantages of harnessing the network
built-in flexibility and topology control. TC2 will result in
a total system cost of 632.682$, with transmission line 14
switched open. The computation time for TC2 is reported 4.16
seconds. The objective function and the computation time in
TC3 are found 629.596978 and 2341.64sec, respectively. In
TC4, where the correlations of the system uncertainties are
managed through a scenario reduction technique, a reduced
number of 5 scenarios is resulted. The PTLS optimization runs
only 5 times, as opposed to TC3 with 202 simulations. Table
III shows the concentrations found in each scenario. The total
system operation cost in TC4 is found 635.4567$ and Table IV
summarizes the cost and simulation run-time in each scenario.
Eventually, the dispatch solutions of the generating units in
each studied test case are demonstrated in Fig. 4.

TABLE II
SIMULATION RESULTS IN DIFFERENT STUDIED TEST CASES

Case # Operation Cost ($) Time (sec.) Switching Line

TC1 639.86894 0.1 Not Allowed
TC2 632.682627 4.16 14
TC3 629.596978 2341.64 14
TC4 635.4567 12.83 14

TABLE III
CONCENTRATION FOR EACH BIN

G
en

er
at

io
n 90%- 93% 0 2 0

93%- 96% 99 202 99
96%- 100% 0 2 0

90%- 93% 93%- 96% 96%- 100%
Load

V. CONCLUSION

This paper presented a probabilistic DCOPF-based formula-
tion for the hour-ahead optimal topology control in power sys-
tems considering the correlations of stochastic variables. This
probabilistic approach conjoins the Point-Estimate Method
(PEM) and a scenario reduction technique to statistically
model and incorporate the system uncertainties (wind gen-
eration and load). Simulation Results on the modified IEEE



TABLE IV
OPERATION COST AND TIME FOR EACH CASE SCENARIO

Scenario # Operation Cost ($) Time (sec.)

S1 637.025525 3.52
S2 601.786825 3.64
S3 633.301306 1.64
S4 673.636879 1.7
S5 628.335681 2.33

Fig. 4. Generation dispatch in different studied test cases.

118-bus test system demonstrated that the proposed proba-
bilistic topology control framework with a scenario reduction
technique can simultaneously and significantly improve the
operation cost-effectiveness and computational efficiency of
the power grid operation optimization.
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