Science II:

A Report from the 2012 IFSR Conversation
Sankt Magdalena, Linz, Austria
The Team

Stuart Umpleby umpleby@gmail.com
Jerry Chandler jerry_lr_chandler@mac.com
Allenna Leonard allenna_leonard@yahoo.com
Michael Lissack michael.lissack@gmail.com
Helmut Loeckenhoff loeckenhoff.hellk@t-online.de
Tatiana Medvedeva tmedvedeva@mail.ru
Leonie Solomons leonie.solomons@gmail.com
We Began by Raising Issues

• Social Science practitioners express frustrations/limitations with Science I
• General needs of a philosophy/epistemology of Science
• Specific needs for a hypothetical Science II
• What would that Science II include?
Frustrations and limitations regarding Science I
(as expressed by individual members of the team)

• Methodological misfits
• Reliable prediction is not always possible
• Our ability to “see” and “express” certain phenomena is restricted by Science I in use
• The experience of “x” is not the same as the label “x”
• Ceteris paribus is nonsense
Philosophy of Science As Used

• Articulations of examples are most commonly physics based
• Despite the claims by physicists, other sciences cannot be reduced to physics or its equivalents without raising issues of both epistemology and ontology
• Other sciences have unique requirements demanding exact articulations
• Systems composed of thinking elements should not be described using methods developed for systems with non-thinking elements
Deficiencies in the Philosophy of Physics Generate Frustrations

• Role of Observer
• Role of Emergence
• Role of Habitus – the social, cultural, cognitive, historical, contextual milieu
• Ambiguity of Number Symbols (Whole versus Continuous)
• No Place for Reflexivity
• “Physics envy” not appropriate for many other fields (e.g. chemistry, biology, social sciences…..)
General needs

• Basis for social sciences and design (pragmatic assumptions)
• Need to deal with ideas and communication in social systems
• Philosophy of Science needs expansion
• Paths to potential logics of social sciences
• What is the basic unit (individual, group, set, dynamic, environment, etc.?)
• To separate biomedical concepts from social science concepts (e.g. the patient-physician relationship)
General needs

• Science II will require different languages than are commonly used in Science I
• Science II will require different frameworks of thinking
• Meta-level thinking as an opportunity
• Need for new strategies of simplification so as to meet requisite variety
Science II needs

Science needs to change as the world changes
New ontology and epistemology
More transparency (to open the action and option space)
Trans-disciplinarity as a shared basis for cross disciplinary conversations
Formulate knowledge as methods as well as theories (include the observer)
What Does This Imply for Science II?

- Enrich the systems approach
- Reconcile the Eastern and Western approaches
- Science II demands narratives
- Example of Medical Heuristics (e.g. narratives told by physicians to patients)
- Reflexive Anticipation
- Notion of “Best Practices” needs to be re-examined
- More variety in describing homeostats and balance relationships
- Ways to express circular causality
Social Implications of Science II

• Inclusion of actors
• Inclusion of descriptive social factors (habitus)
• Explicit acknowledgement of conflicts of interests
• Acknowledges the potential for interference through politics and power relationships
• Need ways to discuss/cope with incommensurability
New Ideas
EPISTEMOLOGY

II?

What is Science
Sciences of and About Humans

Involve Observers
Including the Observer Adds a Dimension to Science

“All statements made are made by an observer.”
(Maturana)
Considering the Effect of Theory on Phenomenon adds another Dimension to Science

“Social science theories are created in the hope of changing social systems” (Umpleby)
“Physical science theories have no such purpose” (Chandler)
Popper’s Three Worlds

External World

Science

Descrip\n\nion

Cognition

Action

Observer

*
What Happens When We Add the Observer to Science?
What Happens When We Add the Observer to Science?
What Happens When We Add the Observer to Science?

• New Elements Emerge
 • Observation
 • Participation
 • Anticipation
 • Feed Forward and Feedback
 • Will and Purpose
 • Role of Assumptions (habitus)
• Not Present In Science I
What Happens When We Add Feed-Forward Reasoning to Science?

• Language changes to include future tense
• Acting now in order to affect the future (telos, and why?)
• Spontaneity, Proactivity, and Anticipation play roles. All three act as circular inputs to goals. New learning cycles may emerge.
• Explanations cannot rest on labels but demand consideration of circular feed-forward-feedback effects
• New relations are introduced and new critical thresholds must be considered
• Knowledge is expressed more as methods (how) and less as theory (what)
• Recognize the role of implicit knowledge

*
What happens when we add Will/Purpose to Science?

• Final cause becomes a basis of reasoning
• Consideration of the combinations and permutations of the affordances available becomes important
• Actors/observers/systems can be combined in multiple ways which give rise to potential conflicts of will
• Politics then may rear its ugly head
• The possibility of such conflicts demands the articulation of habitus so as to enable the exploration of commonalities and differences
"That's where you're wrong! It is rocket science."
"There aren't any icons to click. It's a chalk board."

What is Science

II?

ONTOMETRY
Simpl e

Complicat ed

Emergence
Reflexive
Anticipation
Will

Ontolog

Science

y

Science

2

Complex
Chaotic
Science I

Simple
Focus is on Description
Deduction

Complicated
Focus is on Reliable Prediction
Induction via Probabilistic Inference
Issues for Science I

• Emergence
• Reflexive Anticipation
• Will
Science II

Complex

Focus is on
Sagacity (Preparedness) /
Resilience / Robustness

Chaotic

Focus is on Pattern
Recognition / Identity
Assertion

Abduction

Assert Identity

*
The Ontology Is Like A Mobius Strip

Deduction

Description

Labels

Simpl

Complex

Induction

Probabilistic

Inference

Category

Inclusion

Complicated

Abduction

“What-If?” Narratives

Action

Complex

Assertion of Identity

Pattern Recognition

Identity

Chaotic

Science I

Science II
Science I and II are Ontologically Distinct

<table>
<thead>
<tr>
<th>Science I</th>
<th>Science II</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prediction</td>
<td>• Preparedness</td>
</tr>
<tr>
<td>• Retrospective thinking</td>
<td>• Anticipatory Proactive thinking</td>
</tr>
<tr>
<td>• Physics is Closed to Emergence (Chemistry/Biology Not)</td>
<td>• Explicitly Embraces Emergence</td>
</tr>
<tr>
<td>• Excludes Observers</td>
<td>• Includes Observers</td>
</tr>
<tr>
<td>• Category Based</td>
<td>• Based on “What-If?” Models</td>
</tr>
<tr>
<td>• Mathematics dominates Symbol Code</td>
<td>• Narrative Explanations</td>
</tr>
</tbody>
</table>

*
Sherrill's

Eat Here
And
Get Gas

Bill & Ann--Owners

Self Service

Unleaded

297

Unleaded Plus

207
Highlights

Science I
• Retrospective
• Prediction
• Closed to Science II
• Positivist/Realist
• Code Based (labels)
• Context as Parameters
• Quantitatively Measurable

Science II
• Anticipatory
• Preparedness
• Open to Science I
• Constructivist/Pragmatic
• Cue Based (affordances)
• Context as Participatory Catalyst
• “Lossy” Descriptions

*
Science Too!
The Science II Team:

On-line at
Http://isce.edu/ifsr.pdf