Unifying Epistemologies by Combining World, Description and Observer

Stuart A. Umpleby
The George Washington University
Washington, DC
www.gwu.edu/~umpleby
At a dinner in Vienna in November 2005 Karl Mueller mentioned Heinz von Foerster’s 1971 article “Computing in the Semantic Domain

Von Foerster described a triangle and labeled two sides syntactics and semantics

Mueller wondered what the third side would be
Origin of this paper 2

• I suggested “pragmatics”
• Later in thinking about the triangle it occurred to me that the three sides corresponded to three points of view in the history of cybernetics
• The triangle suggested a way to unify previously competing epistemologies
Description 1 2 Observer

World

1 3

Description 1 2 Observer

World

1 3
Von Foerster’s epistemological triangle
Epistemological triangle

<table>
<thead>
<tr>
<th>World and description</th>
<th>Observer and description</th>
<th>Observer and world</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntactics</td>
<td>Semantics</td>
<td>Pragmatics</td>
</tr>
<tr>
<td>Representation concept of truth</td>
<td>Coherence concept of truth</td>
<td>Pragmatic concept of truth</td>
</tr>
<tr>
<td>British Empiricism</td>
<td>German Idealism</td>
<td>American Pragmatism</td>
</tr>
<tr>
<td>Inanimate Objects</td>
<td>Knowing Subjects</td>
<td>Social Reforms</td>
</tr>
<tr>
<td>Unquestioned Objectivity</td>
<td>Constructed Objectivity</td>
<td>Contested Objectivity</td>
</tr>
<tr>
<td>Form</td>
<td>Meaning</td>
<td>What works</td>
</tr>
</tbody>
</table>
Another use of the triangle

- In 1991 I made a table comparing constructivist cybernetics, or the work of von Foerster, with that of Popper and Kuhn
- It seems to me that the three columns in that table also can be mapped onto the triangle
- This suggests that second order cybernetics constitutes an important third perspective in the philosophy of science
<table>
<thead>
<tr>
<th>Popper</th>
<th>von Foerster</th>
<th>Kuhn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A normative view of epistemology: how scientists should operate</td>
<td>A biological view of epistemology: how the brain functions</td>
<td>A sociological view of epistemology: how scientists in fact operate</td>
</tr>
<tr>
<td>Non-science vs. science</td>
<td>Realism vs. constructivism</td>
<td>Steady progress vs. revolutions</td>
</tr>
<tr>
<td>Solve the problem of induction: conjectures and refutations</td>
<td>Include the observer within the domain of science</td>
<td>Explain turmoil in original records vs. smooth progress in textbooks</td>
</tr>
<tr>
<td>How science as a picture of reality is tested and grows</td>
<td>How an individual constructs a “reality”</td>
<td>How paradigms are developed and then replaced</td>
</tr>
<tr>
<td>Scientific knowledge exists independent of human beings</td>
<td>Ideas about knowledge should be rooted in neurophysiology</td>
<td>Even data and experiments are interpreted</td>
</tr>
<tr>
<td>We can know what we know and do not know</td>
<td>If people accept this view, they will be more tolerant</td>
<td>Science is a community activity</td>
</tr>
</tbody>
</table>
Popper’s three “worlds”

• “World” can be thought of as Popper’s “world one”
• “The observer” is what Popper meant by “world two”
• “Description” can be thought of as Popper’s “world three”
<table>
<thead>
<tr>
<th></th>
<th>Engineering Cybernetics</th>
<th>Biological Cybernetics</th>
<th>Social Cybernetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>The view of epistemology</td>
<td>A realist view of epistemology: knowledge is a “picture” of reality</td>
<td>A biological view of epistemology: how the brain functions</td>
<td>A pragmatic view of epistemology: knowledge is constructed to achieve human purposes</td>
</tr>
<tr>
<td>A key distinction</td>
<td>Reality vs. scientific theories</td>
<td>Realism vs. Constructivism</td>
<td>The biology of cognition vs. the observer as a social participant</td>
</tr>
<tr>
<td>The puzzle to be solved</td>
<td>Construct theories which explain observed phenomena</td>
<td>Include the observer within the domain of science</td>
<td>Explain the relationship between the natural and the social sciences</td>
</tr>
<tr>
<td>What must be explained</td>
<td>How the world works</td>
<td>How an individual constructs a “reality”</td>
<td>How people create, maintain, and change social systems through language and ideas</td>
</tr>
<tr>
<td>A key assumption</td>
<td>Natural processes can be explained by scientific theories</td>
<td>Ideas about knowledge should be rooted in neurophysiology.</td>
<td>Ideas are accepted if they serve the observer’s purposes as a social participant</td>
</tr>
<tr>
<td>An important consequence</td>
<td>Scientific knowledge can be used to modify natural processes to benefit people</td>
<td>If people accept constructivism, they will be more tolerant</td>
<td>By transforming conceptual systems (through persuasion, not coercion), we can change society</td>
</tr>
</tbody>
</table>

Three Versions of Cybernetics
Engineering cybernetics 1

• A realist view of epistemology: knowledge is a picture of reality
• A key distinction: reality vs. scientific theories
• The puzzle to be solved: construct theories which explain observed phenomena
Engineering cybernetics 2

• What must be explained: how the world works

• A key assumption: natural processes can be explained by scientific theories

• An important consequence: scientific knowledge can be used to modify natural processes to benefit people
Biological cybernetics 1

• A biological view of epistemology: how the brain functions
• A key distinction: realism vs. constructivism
• The puzzle to be solved: include the observer within the domain of science
Biological cybernetics 2

• What must be explained: how an individual constructs a “reality”

• A key assumption: ideas about knowledge should be rooted in neurophysiology

• An important consequence: if people accept constructivism, they will be more tolerant
Social cybernetics 1

• A pragmatic view of epistemology: knowledge is constructed to achieve human purposes

• A key distinction: the biology of cognition vs. the observer as a social participant

• The puzzle to be solved: explain the relationship between the natural and the social sciences
Social cybernetics 2

• What must be explained: how people create, maintain, and change social systems through language and ideas

• A key assumption: ideas are accepted if they serve the observer’s purposes as a social participant

• An important consequence: by transforming conceptual systems (through persuasion, not coercion), we can change society
<table>
<thead>
<tr>
<th>The view of epistemology</th>
<th>Engineering Cybernetics</th>
<th>Biological Cybernetics</th>
<th>Social Cybernetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A realist view of epistemology: knowledge is a “picture” of reality</td>
<td>A biological view of epistemology: how the brain functions</td>
<td>A pragmatic view of epistemology: knowledge is constructed to achieve human purposes</td>
<td></td>
</tr>
<tr>
<td>A key distinction</td>
<td>Reality vs. scientific theories</td>
<td>Realism vs. Constructivism</td>
<td>The biology of cognition vs. the observer as a social participant</td>
</tr>
<tr>
<td>The puzzle to be solved</td>
<td>Construct theories which explain observed phenomena</td>
<td>Include the observer within the domain of science</td>
<td>Explain the relationship between the natural and the social sciences</td>
</tr>
<tr>
<td>What must be explained</td>
<td>How the world works</td>
<td>How an individual constructs a “reality”</td>
<td>How people create, maintain, and change social systems through language and ideas</td>
</tr>
<tr>
<td>A key assumption</td>
<td>Natural processes can be explained by scientific theories</td>
<td>Ideas about knowledge should be rooted in neurophysiology.</td>
<td>Ideas are accepted if they serve the observer’s purposes as a social participant</td>
</tr>
<tr>
<td>An important consequence</td>
<td>Scientific knowledge can be used to modify natural processes to benefit people</td>
<td>If people accept constructivism, they will be more tolerant</td>
<td>By transforming conceptual systems (through persuasion, not coercion), we can change society</td>
</tr>
</tbody>
</table>
Cautions

• The fact that ideas can be plausibly mapped onto a triangle carries no meaning per se.
• However, an arrangement in the form of a diagram may reveal connections or missing pieces that had not been apparent before.
• A graphical representation of ideas is simply a heuristic device.
Conclusions and Implications

• Connects second order cybernetics with Popper’s worlds 1, 2, and 3
• Suggests that world 3 is more important than previously thought by cyberneticians and others
• Shows there is more than one interpretation of the injunction, “include the observer”
Presented at the annual meeting of the
American Society for Cybernetics
University of Illinois
Urbana, Illinois
March 29-April 1, 2007
Science one vs. science two

- Observation
- Description
- Well-tested knowledge
- Extrapolate/ forecast
- Accuracy/ precision

- Participation
- Prescription
- Agreement
- Create/ design
- Usefulness
Two strategies for building knowledge

- Accumulation
- More theories
- More abstract theories
- Separate disciplinary languages
- Administrative barriers between fields
- Disciplines remain separate

- Integration
- Add a dimension (CP)
- Revise the philosophy of science
- A common language
- Show similarities among fields
- Work together
Two ways to structure knowledge

• Most philosophers of science
• Cause and effect
• If A, then B
• Analysis
• Reductionism
• Theories

• E.A. Singer, Jr., Churchman, Ackoff
• Producer - product
• What is needed
• Synthesis
• Expansionism
• Methods
<table>
<thead>
<tr>
<th>Author</th>
<th>First Order Cybernetics</th>
<th>Second Order Cybernetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von Foerster</td>
<td>The cybernetics of observed systems</td>
<td>The cybernetics of observing systems</td>
</tr>
<tr>
<td>Pask</td>
<td>The purpose of a model</td>
<td>The purpose of a modeler</td>
</tr>
<tr>
<td>Varela</td>
<td>Controlled systems</td>
<td>Autonomous systems</td>
</tr>
<tr>
<td>Umpleby</td>
<td>Interaction among the variables in a system</td>
<td>Interaction between observer and observed</td>
</tr>
<tr>
<td>Umpleby</td>
<td>Theories of social systems</td>
<td>Theories of the interaction between ideas and society</td>
</tr>
</tbody>
</table>

Definitions of First and Second Order Cybernetics
The cybernetics of science

NORMAL SCIENCE

The correspondence principle

Incommensurable definitions

SCIENTIFIC REVOLUTION
The Correspondence Principle

- Proposed by Niels Bohr when developing the quantum theory
- Any new theory should reduce to the old theory to which it corresponds for those cases in which the old theory is known to hold
- A new dimension is required
An Application of the Correspondence Principle