Minor-Closed Classes of Polymatroids

Joseph E. Bonin

The George Washington University

These slides are available at
http://blogs.gwu.edu/jbonin/
Polymatroids

A (discrete or integer) **polymatroid** on a set E is a function $\rho : 2^E \to \mathbb{Z}$ that is

- **normalized**: $\rho(\emptyset) = 0$,
- **non-decreasing**: $\rho(A) \leq \rho(B)$ for all $A \subseteq B \subseteq E$, and
- **submodular**: $\rho(A \cup B) + \rho(A \cap B) \leq \rho(A) + \rho(B)$ for all $A, B \subseteq E$.

Polymatroids generalize matroids by allowing elements to be loops, points, lines, planes, ..., not just loops or points.

A 2-polymatroid: $\rho(\emptyset) = 0$; $\rho(d) = 1$; sets X with $\rho(X) = 2$: $\{a\}$, $\{b\}$, $\{c\}$, $\{a, d\}$, $\{b, d\}$; the rest have $\rho(X) = 3$.
A polymatroid ρ on E is a k-polymatroid if $\rho(e) \leq k$ for all $e \in E$.

Matroids are 1-polymatroids.

Minors are defined as for matroids, via ρ: for $A \subseteq E$,
- deletion: $\rho\backslash_A(X) = \rho(X)$ for $X \subseteq E - A$,
- contraction: $\rho/_{A}(X) = \rho(X \cup A) - \rho(A)$ for $X \subseteq E - A$,
- minors: any combination of deletion and contraction.

The class \mathcal{P}_k of k-polymatroids is minor-closed, that is, all minors of polymatroids in \mathcal{P}_k are in \mathcal{P}_k.

There is one excluded minor for \mathcal{P}_k for each $t > k$: ρ on $\{e\}$ with $\rho(e) = t$.
The **Boolean polymatroid** of a graph $G = (V, E)$ is the 2-polymatroid ρ_G on E with $\rho_G(X) = |V(X)|$, where $V(X) = \{v \in V : v \text{ is incident with at least one edge in } X\}$.

Proposition

Apart from isolated vertices, we can reconstruct G from ρ_G.

Note that $\rho_G(X) = 2|X|$ if and only if X is a matching.

Boolean polymatroids have substantial implications for matching theory.
The excluded minors for Boolean polymatroids

The class of Boolean polymatroids, extended by allowing polymatroid loops, is minor-closed (deletion is graph deletion; contraction is a variant on graph deletion).

There are eight excluded minors (within the class of 2-polymatroids).

Oxley and Whittle
The k-dual ρ^* of a k-polymatroid ρ on E: for $X \subseteq E$,

$$\rho^*(X) = k|X| - \rho(E) + \rho(E - X).$$

The k-dual: is a k-polymatroid;
depends on k;
is an involution: $(\rho^*)^* = \rho$;
relates deletion and contraction:

$$(\rho \setminus A)^* = (\rho^*) / A \quad \text{and} \quad (\rho / A)^* = (\rho^*) \setminus A.$$
A way to get some k-polymatroids

For matroids M_1, M_2, \ldots, M_k on E, defining $\rho : 2^E \to \mathbb{Z}$ by

$$\rho(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_k}(X),$$

for $X \subseteq E$, gives a k-polymatroid. We say ρ is k-decomposable.
A way to get some \(k\)-polymatroids

For matroids \(M_1, M_2, \ldots, M_k\) on \(E\), defining \(\rho : 2^E \to \mathbb{Z}\) by

\[
\rho(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_k}(X),
\]

for \(X \subseteq E\), gives a \(k\)-polymatroid. We say \(\rho\) is \(k\)-decomposable.

Decompositions interact well with minors and the \(k\)-dual:

\begin{itemize}
 \item \(\rho \backslash A = r_{M_1 \backslash A} + r_{M_2 \backslash A} + \cdots + r_{M_k \backslash A}\),
 \item \(\rho / A = r_{M_1 / A} + r_{M_2 / A} + \cdots + r_{M_k / A}\), and
 \item \(\rho^* = r_{M_1^*} + r_{M_2^*} + \cdots + r_{M_k^*}\).
\end{itemize}
Not all polymatroids are decomposable

A counterpart, for 2-polymatroids, of the Vámos matroid:

\[
\rho(X) = \begin{cases}
2|X|, & \text{if } |X| \leq 1, \\
3, & \text{if } |X| = 2 \text{ and } X \neq \{a, d\}, \\
4, & \text{otherwise.}
\end{cases}
\]

This 2-polymatroid is isomorphic to its 2-dual.
Not all polymatroids are decomposable

A counterpart, for 2-polymatroids, of the Vámos matroid:

\[
\rho(X) = \begin{cases}
2|X|, & \text{if } |X| \leq 1, \\
3, & \text{if } |X| = 2 \text{ and } X \neq \{a, d\}, \\
4, & \text{otherwise.}
\end{cases}
\]

This 2-polymatroid is isomorphic to its 2-dual.

A notion suggested by Boolean polymatroids:

An incidence set in a polymatroid \(\rho \) on \(E \) is a subset \(X \) of \(E \) with \(|X| \geq 2 \) and \(\rho(X') = |X'| + 1 \) for all \(X' \subseteq X \) with \(1 \leq |X'| \leq 3 \).
Not all polymatroids are decomposable

Incidence set: \(|X| \geq 2 \) and \(\rho(X') = |X'| + 1 \) for all \(X' \subseteq X \) with \(1 \leq |X'| \leq 3 \).

Lemma

<table>
<thead>
<tr>
<th>Bonin, 2016+</th>
</tr>
</thead>
</table>
| Let \(\rho \) be \(r_{M_1} + r_{M_2} + \cdots + r_{M_k} \) for matroids \(M_1, M_2, \ldots, M_k \) on \(E \).
| 1. For any incidence set \(X \) of \(\rho \), there is exactly one \(M_i \) in which all elements of \(X \) are parallel. |
| 2. Let \(X \) and \(Y \) be incidence sets. If \(X \cap Y \neq \emptyset \) but \(\rho(\{a, b\}) = 4 \) for some \(a \in X \) and \(b \in Y \), then \(|X \cap Y| = 1 \). |

Using part (2) with \(\{a, b, c\} \) and \(\{b, c, d\} \) shows that \(\rho \) is not decomposable.

For all \(k \geq 2 \), \(\rho \) is an excluded minor for the minor-closed class \(\mathcal{D}_k \) of \(k \)-decomposable polymatroids.
Which polymatroids are of this type?

Which polymatroids are decomposable? (Murty and Simon, 1978.)

What are the excluded-minors for D_k?

Even D_2 seems to be open.

What are the excluded-minors for $\bigcup_{k \geq 2} D_k$?
Which polymatroids are of this type?

Which polymatroids are decomposable? (Murty and Simon, 1978.)

What are the excluded-minors for \mathcal{D}_k?

Even \mathcal{D}_2 seems to be open.

What are the excluded-minors for $\bigcup_{k \geq 2} \mathcal{D}_k$?

Given ρ, there may be many options for M_1, M_2, \ldots, M_k.

Lemos (2002) showed how, given one decomposition of a 2-polymatroid ρ, to get all decompositions of ρ.

D. Chun (2009) studied deletion-contraction polymatroids, or dc-polymatroids, that is, 2-polymatroids of the form

$$\rho(X) = r_{M\setminus y}(X) + r_{M/y}(X)$$

for $X \subseteq E$, for some matroid M on $E \cup y$.

(Vertigan; Geelen, Gerards, and Whittle.)

A 2-polymatroid that is not a dc-polymatroid:
A special case: dc-polymatroids

D. Chun (2009) studied deletion-contraction polymatroids, or dc-polymatroids, that is, 2-polymatroids of the form

$$\rho(X) = r_{M\setminus y}(X) + r_{M/y}(X)$$

for $X \subseteq E$, for some matroid M on $E \cup y$.

(Vertigan; Geelen, Gerards, and Whittle.)

A 2-polymatroid that is not a dc-polymatroid:

$$\rho$$

- f
- e

(Vertigan; Geelen, Gerards, and Whittle.)

A 2-polymatroid that is not a dc-polymatroid:

- f
- e

- e
- f

Theorem

D. Chun, 2009

The excluded minors for the minor-closed class of dc-polymatroids, within P_2, are ρ (above) and $U_{2,2}$.
A matroid Q is a quotient of L, or L is a lift of Q, if $L = M \setminus A$ and $Q = M / A$ for some matroid M and $A \subseteq E(M)$.

E.g., extend the uniform matroid $U_{5,9}$ on $\{1, 2, \ldots, 9\}$ by three elements using the modular cuts generated by

- $\{1, 2, 3\}$ and $\{4, 5, 6\}$,
- $\{1, 2, 3\}$ and $\{7, 8, 9\}$,
- $\{4, 5, 6\}$ and $\{7, 8, 9\}$,

and then contract the added elements to get the quotient

```
1, 2, 3   4, 5, 6   7, 8, 9
```
For matroids Q and L on E, the following are equivalent:

- Q is a quotient of L;
- L^* is a quotient of Q^*;
- $r_L - r_Q$ is non-decreasing; that is, for all $X \subseteq Y \subseteq E$,
 \[
 r_L(X) - r_Q(X) \leq r_L(Y) - r_Q(Y),
 \]
 or, equivalently,
 \[
 r_Q(X \cup e) - r_Q(X) \leq r_L(X \cup e) - r_L(X)
 \]
 for all X and $e \in E - X$.

Quotients
A broader special case

A polymatroid ρ of the form $\rho = r_{M_1} + r_{M_2} + \cdots + r_{M_k}$ where each matroid M_{i+1} is a quotient of M_i is a k-quotient polymatroid.

The class Q_k of k-quotient polymatroids is minor-closed and k-dual-closed.
A broader special case

A polymatroid ρ of the form $\rho = r_{M_1} + r_{M_2} + \cdots + r_{M_k}$ where each matroid M_{i+1} is a quotient of M_i is a k-quotient polymatroid.

The class Q_k of k-quotient polymatroids is minor-closed and k-dual-closed.

Use $r_Q(X \cup e) - r_Q(X) \leq r_L(X \cup e) - r_L(X)$ to get r_{M_i} recursively from ρ: $r_{M_i}(\emptyset) = 0$; for $e \in E - X$,

$$r_{M_i}(X \cup e) = \begin{cases} r_{M_i}(X) + 1, & \text{if } \rho(X \cup e) \geq \rho(X) + i, \\ r_{M_i}(X), & \text{otherwise.} \end{cases}$$
The excluded minors for k-quotient polymatroids

Theorem

Bonin, 2016+

Fix $k \geq 2$. The excluded minors for Q_k, within P_k, are indexed by the $\binom{k+1}{3}$ 3-subsets $A = \{a, b, c\}$ of $\{0, 1, \ldots, k\}$: if $a < b < c$, define ρ_A on $\{e, f\}$ by $\rho_A(\emptyset) = 0$, $\rho_A(e) = b$, $\rho_A(f) = c$, and $\rho_A(\{e, f\}) = a + c$.

\[
\begin{align*}
\emptyset & \quad \{e\} & \quad \{f\} & \quad \{e, f\} & \quad a + c - b & \quad a & \quad c > a + c - b > a \\
& \quad b & \quad \{e\} & \quad \{f\} & \quad a & \quad c & \quad b < c
\end{align*}
\]
A sketch of the proof: the easier direction

First: ρ_A is not $r_{M_1} + r_{M_2} + \cdots + r_{M_k}$ for any sequence of quotients. If such a sequence existed, use the recurrence relation for r_{M_c}:

- the chain $\emptyset \subseteq \{e\} \subseteq \{e, f\}$ yields $r_{M_c}(\{e, f\}) = 0$;
- the chain $\emptyset \subseteq \{f\} \subseteq \{e, f\}$ yields $r_{M_c}(\{e, f\}) = 1$.

Minimality is obvious by cardinality, so these are excluded minors.
A sketch of the proof: the converse

\[r_{M_i}(∅) = 0; \text{ if } e \in E - X, \text{ then} \]

\[r_{M_i}(X \cup e) = \begin{cases}
 r_{M_i}(X) + 1, & \text{if } \rho(X \cup e) \geq \rho(X) + i, \\
 r_{M_i}(X), & \text{otherwise.}
\end{cases} \]

Most of the (light) work for the converse is inducting to show that if a \(k \)-polymatroid \(\rho \) has no \(\rho_A \)-minors, then defining \(r_{M_1}, r_{M_2}, \ldots, r_{M_k} \) by the recurrence above is well-defined, i.e., when \(X \cup e = X' \cup e' \), the recurrence gives

\[r_{M_i}(X \cup e) = r_{M_i}(X' \cup e'). \]

Then check the rank axioms for each \(r_{M_i} \).

It is immediate that \(M_{i+1} \) is a quotient of \(M_i \).
Focus on polymatroids $\rho = r_{M_1} + r_{M_2} + \cdots + r_{M_k}$ in D_k.

An incidence set is a set $X \subseteq E$ with $|X| \geq 2$ and $\rho(X') = |X'| + 1$ for all $X' \subseteq X$ with $1 \leq |X'| \leq 3$.

Lemma

All elements of an incidence set X are parallel in one M_i. Set $p(X) = M_i$.

Structure forced on the matroids in k-decompositions
For a graph $G = (V, E)$, with $V = \{v_1, v_2, \ldots, v_n\}$, its Boolean polymatroid is the 2-polymatroid ρ_G on E with $\rho_G(X) = |V(X)|$, where $V(X) = \{v_i : v_i \text{ is incident with at least one edge in } X\}$.

For i with $1 \leq i \leq n$, set $E_i = \{e \in E : e \text{ is incident with } v_i\}$ and $M_i = U_{1,E_i} \oplus U_{0,E-E_i}$.

Thus, for $X \subseteq E$, $\rho_G(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_n}(X)$.
For a graph $G = (V, E)$, with $V = \{v_1, v_2, \ldots, v_n\}$, its **Boolean polymatroid** is the 2-polymatroid ρ_G on E with $\rho_G(X) = |V(X)|$, where $V(X) = \{v_i : v_i \text{ is incident with at least one edge in } X\}$.

For i with $1 \leq i \leq n$, set $E_i = \{e \in E : e \text{ is incident with } v_i\}$ and $M_i = U_{1,E_i} \oplus U_{0,E-E_i}$.

Thus, for $X \subseteq E$, $\rho_G(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_n}(X)$.

Assume G has no loops. Let $c : V \to \{1, \ldots, \chi(G)\}$ be a coloring.

If $c(v_i) = c(v_j)$, then $E_i \cap E_j = \emptyset$, so we can replace M_i and M_j by $U_{1,E_i} \oplus U_{1,E_j} \oplus U_{0,E-(E_i\cup E_j)}$.
A connection with graph coloring

For a graph \(G = (V, E) \), with \(V = \{v_1, v_2, \ldots, v_n\} \), its Boolean polymatroid is the 2-polymatroid \(\rho_G \) on \(E \) with \(\rho_G(X) = |V(X)| \), where \(V(X) = \{v_i : v_i \text{ is incident with at least one edge in } X\} \).

For \(i \) with \(1 \leq i \leq n \), set \(E_i = \{e \in E : e \text{ is incident with } v_i\} \) and \(M_i = U_{1,E_i} \oplus U_{0,E-E_i} \).

Thus, for \(X \subseteq E \), \(\rho_G(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_n}(X) \).

Assume \(G \) has no loops. Let \(c : V \to \{1, \ldots, \chi(G)\} \) be a coloring.

If \(c(v_i) = c(v_j) \), then \(E_i \cap E_j = \emptyset \), so we can replace \(M_i \) and \(M_j \) by \(U_{1,E_i} \oplus U_{1,E_j} \oplus U_{0,E-(E_i \cup E_j)} \).

Applying this whenever \(c(v_i) = c(v_j) \) gives a decomposition \(\rho_G = r_{N_1} + r_{N_2} + \cdots + r_{N_{\chi(G)}} \) with \(\chi(G) \) terms.
For a graph \(G = (V, E) \), with \(V = \{v_1, v_2, \ldots, v_n\} \), its Boolean polymatroid is the 2-polymatroid \(\rho_G \) on \(E \) with \(\rho_G(X) = |V(X)| \), where \(V(X) = \{v_i : v_i \text{ is incident with at least one edge in } X\} \).

For \(i \) with \(1 \leq i \leq n \), set \(E_i = \{e \in E : e \text{ is incident with } v_i\} \) and \(M_i = U_{1,E_i} \oplus U_{0,E-E_i} \).

Thus, for \(X \subseteq E \), \(\rho_G(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_n}(X) \).

Assume \(G \) has no loops. Let \(c : V \to \{1, \ldots, \chi(G)\} \) be a coloring.

If \(c(v_i) = c(v_j) \), then \(E_i \cap E_j = \emptyset \), so we can replace \(M_i \) and \(M_j \) by \(U_{1,E_i} \oplus U_{1,E_j} \oplus U_{0,E-(E_i \cup E_j)} \).

Applying this whenever \(c(v_i) = c(v_j) \) gives a decomposition \(\rho_G = r_{N_1} + r_{N_2} + \cdots + r_{N_{\chi(G)}} \) with \(\chi(G) \) terms.

Note: \(\rho_{C_3} = r_{U_{1,3}} \oplus r_{U_{2,3}} \), and \(2 < \chi(C_3) \).
A connection with graph coloring

For a graph $G = (V, E)$, with $V = \{v_1, v_2, \ldots, v_n\}$, its Boolean polymatroid is the 2-polymatroid ρ_G on E with $\rho_G(X) = |V(X)|$, where $V(X) = \{v_i : v_i$ is incident with at least one edge in $X\}$.

For i with $1 \leq i \leq n$, set $E_i = \{e \in E : e$ is incident with $v_i\}$ and $M_i = U_{1,E_i} \oplus U_{0,E-E_i}$.

Thus, for $X \subseteq E$, $\rho_G(X) = r_{M_1}(X) + r_{M_2}(X) + \cdots + r_{M_n}(X)$.

Assume G has no loops. Let $c : V \rightarrow \{1, \ldots, \chi(G)\}$ be a coloring.

If $c(v_i) = c(v_j)$, then $E_i \cap E_j = \emptyset$, so we can replace M_i and M_j by $U_{1,E_i} \oplus U_{1,E_j} \oplus U_{0,E-(E_i \cup E_j)}$.

Applying this whenever $c(v_i) = c(v_j)$ gives a decomposition $\rho_G = r_{N_1} + r_{N_2} + \cdots + r_{N_{\chi(G)}}$ with $\chi(G)$ terms.

Note: $\rho_{C_3} = r_{U_{1,3}} \oplus r_{U_{2,3}}$, and $2 < \chi(C_3)$. A fluke!
A connection with graph coloring

Let $[k]$ denote $\{1, 2, \ldots, k\}$.

Theorem

Let $G = (V, E)$ be connected, with no loops, and with $|V| \geq 4$.

There is a bijection between colorings $c : V \rightarrow [k]$ and k-tuples of matroids $(N'_1, N'_2, \ldots, N'_k)$ on E with $\rho_G = r_{N'_1} + r_{N'_2} + \cdots + r_{N'_k}$.

Thus, $\min\{k : \rho_G \in \mathcal{D}_k\} = \chi(G)$.

Corollary

If G is $(k+1)$-critical with $k \geq 3$, then ρ_G is an excluded minor for \mathcal{D}_k, as are its i-duals for $2 \leq i \leq k$.

Note: contractions in Boolean polymatroids correspond to a variant on deletions, not contractions, in graphs.

For $k \geq 3$, $(k+1)$-critical graphs are very incompletely understood.
A connection with graph coloring

Let \([k]\) denote \(\{1, 2, \ldots, k\}\).

Theorem

Bonin, 2016+

Let \(G = (V, E)\) be connected, with no loops, and with \(|V| \geq 4\).

There is a bijection between colorings \(c : V \rightarrow [k]\) and \(k\)-tuples of matroids \((N_1', N_2', \ldots, N_k')\) on \(E\) with \(\rho_G = r_{N_1'} + r_{N_2'} + \cdots + r_{N_k'}\).

Thus, \(\min\{k : \rho_G \in \mathcal{D}_k\} = \chi(G)\).

Corollary

If \(G\) is \((k + 1)\)-critical with \(k \geq 3\), then \(\rho_G\) is an excluded minor for \(\mathcal{D}_k\), as are its \(i\)-duals for \(2 \leq i \leq k\).

Note: contractions in Boolean polymatroids correspond to a variant on deletions, not contractions, in graphs.

For \(k \geq 3\), \((k + 1)\)-critical graphs are very incompletely understood.
The **chromatic number** of a polymatroid $\rho \in \bigcup_{k \geq 2} D_k$ is
\[
\chi(\rho) = \min\{k : \rho \in D_k\}.
\]

With the predictable definition of direct sums,
\[
\chi(\rho_1 \oplus \rho_2) = \max\{\chi(\rho_1), \chi(\rho_2)\}.
\]

If ρ' is a minor of ρ, then $\chi(\rho') \leq \chi(\rho)$.

Coloring polymatroids?
The chromatic polynomial, \(\chi(\rho; k) \), of a polymatroid \(\rho \) is the polynomial that, for \(k \in \mathbb{N} \), gives the number of (ordered) \(k \)-tuples \((M_1, M_2, \ldots, M_k)\) of matroids with \(\rho = r_{M_1} + r_{M_2} + \cdots + r_{M_k} \).

This is a polynomial since it is a sum of multinomial coefficients:

\[
\chi(\rho; k) = \sum_{i=1}^{\rho(E)} \sum_{\substack{M_1, M_2, \ldots, M_i \text{ with } i \text{ matroids all of positive rank} \\text{ such that } a_1 \geq a_2 \geq \cdots \geq a_h}} \left(\begin{array}{c} k \\ a_1, a_2, \ldots, a_h, k - i \end{array} \right)
\]

where the inner sum is over all (unordered) decompositions of \(\rho \) with \(i \) matroids, all of positive rank, and \(a_1 \geq a_2 \geq \cdots \geq a_h \) are the multiplicities of the distinct matroids in the decomposition.

What properties does \(\chi(\rho; k) \) have?
An example

Let ρ be the 3-polymatroid on $E = \{a, b, c, d\}$ in which, for $x, y \in E$, $\rho(x) = 3$, $\rho(\{x, y\}) = 5$, and $\rho(E) = 6 = \rho(E - x)$.

The matroids that make up decompositions of ρ:

- $U_{1,4}$, $U_{2,4}$, and $U_{3,4}$ on E.
- Four like this: $U_{1,3}$ and $U_{2,3}$ on $E - d$, with $U_{1,2}$ on $\{x, d\}$ for $x \in E - d$. (Complete each with loops.)
- A $U_{1,2}$ on each 2-subset of E. (Those on disjoint subsets can be in the same matroid.)

$$
\chi(\rho; k) = k(k - 1)(k - 2)(k - 3)(k - 4)(k - 5) \\
+ 7k(k - 1)(k - 2)(k - 3)(k - 4) \\
+ 3k(k - 1)(k - 2)(k - 3) \\
+ 2k(k - 1)(k - 2) \\
= k^6 - 8k^5 + 18k^4 + 4k^3 - 49k^2 + 34k.
$$

This is not the chromatic polynomial of any graph.
Theorem

Let $G = (V, E)$ be a connected graph with $|V| \geq 4$.

Let ρ be the truncation of ρ_G to rank t where $4 \leq t \leq |V|$.

If $\rho \in \mathcal{D}_k$, then there is a coloring $c : V \to [k]$ of G with
$t \geq \left| \{ i \in [k] : |c^{-1}(i)| = 1 \} \right| + 2 \left| \{ i \in [k] : |c^{-1}(i)| > 1 \} \right|.$

Corollary

For $n \geq 2$, the truncation of $\rho_{C_{2n+1}}$ to rank 4 is an excluded-minor for $\bigcup_{k \geq 2} \mathcal{D}_k$.
Polymatroids from hypergraphs

A hypergraph is an ordered pair $H = (E, \mathcal{E})$ where \mathcal{E} is a multiset $\{X_1, X_2, \ldots, X_k\}$ of nonempty subsets of E.

Each $e \in E$ is a vertex. Each X_i is a (hyper)edge.

For $i \in [k]$, set $M_i = U_{1,X_i} \oplus U_{0,E-X_i}$, a rank-1 matroid with $E - X_i$ as the set of loops.

Let ρ_H be the decomposable polymatroid on E given by

$$\rho_H = r_{M_1} + r_{M_2} + \cdots + r_{M_k}. $$

Thus, for $A \subseteq E$,

$$\rho_H(A) = |\{i \in [k] : A \cap X_i \neq \emptyset\}|.$$
The class of polymatroids from hypergraphs is minor-closed

For $a \in E$, the deletion $(\rho_H)\backslash a$ comes from the hypergraph
$H\backslash a = (E - a, \mathcal{E}\backslash a)$ where $\mathcal{E}\backslash a = \{X_1 - a, X_2 - a, \ldots, X_k - a\}$
(discarding any copies of the empty set).

The contraction $(\rho_H)/a$ comes from the hypergraph
$H/a = (E - a, \mathcal{E}/a)$ where \mathcal{E}/a consists of the sets $X_i \in \mathcal{E}$ with $a \notin X_i$.

(These are not ordinary deletion and contraction in hypergraphs; we are deleting or contracting an element of E, not \mathcal{E}.)
Proposition

The polymatroid ρ_H gives the hypergraph $H = (E, \mathcal{E})$.

Proof: Use PIE to find, for $X \subseteq E$, the number of i with $X_i = X$.

For $e \in E$ and $i \in [k]$, say i has property p_e when $e \notin X_i$.

Thus, $X_i = X$ iff i has exactly the properties p_e with $e \in E - X$.

For $Y \subseteq E$, the number of integers i lacking at least one property p_e, for $e \in Y$, is $\rho_H(Y)$, so $k - \rho_H(Y)$ integers have all of these properties, and maybe more.

Thus, the number of i with $X_i = X$ is

$$\sum_{Y \supseteq E - X} (-1)^{|Y| - |E - X|} (k - \rho_H(Y)) = \sum_{Y \supseteq E - X} (-1)^{|Y| - |E - X| + 1} \rho_H(Y).$$
One can extend these ideas to show that a polymatroid comes from a hypergraph if and only if all sums of the type that arose in the proof above are non-negative.

Proposition

A polymatroid ρ on E is ρ_H for some hypergraph H on E iff

$$\sum_{T \supseteq S} (-1)^{|T-S|+1} \rho(T) \geq 0$$

for all $S \subsetneq E$.

Bonin, 2012+
The line graph of a hypergraph

For line graph G_H of a hypergraph H has as vertices the edges X_1, X_2, \ldots, X_k of H, and an edge joins X_i and X_j whenever $X_i \cap X_j \neq \emptyset$.

For $i \in [k]$, set $M_i = U_{1, X_i} \oplus U_{0, E - X_i}$, a rank-$1$ matroid with $E - X_i$ as the set of loops.

Let ρ_H be the decomposable polymatroid on E given by

$$\rho_H = r_{M_1} + r_{M_2} + \cdots + r_{M_k}.$$

Let $c : E \to [t]$ be a t-coloring of G_H.

If $c(X_i) = c(X_j)$, then $X_i \cap X_j = \emptyset$. Replace M_i and M_j by $U_{1, X_i} \oplus U_{1, X_j} \oplus U_{0, E - (X_i \cup X_j)}$.

Thus, $\chi(\rho_H) \leq \chi(G_H)$. When is this optimal?
Some sufficient conditions for optimality

Theorem

Let $H = (E, \mathcal{E})$ be a hypergraph, where $\mathcal{E} = \{X_1, X_2, \ldots, X_k\}$. Assume that

1. $|X_i \cap X_j| \leq 1$ for all $i, j \in [k]$ with $i \neq j$, and
2. for any three distinct pairwise non-disjoint sets X_h, X_i, X_j in \mathcal{E}, some pair of elements in $X_h \cup X_i \cup X_j$ is in no set in \mathcal{E}.

If $\rho_H = r_{N_1} + r_{N_2} + \cdots + r_{N_t}$ for matroids N_1, N_2, \ldots, N_t on E, then each N_i is a direct sum of uniform matroids of ranks 0 and 1, and the ground sets of the uniform matroids of rank 1 that occur in N_1, N_2, \ldots, N_t are exactly X_1, X_2, \ldots, X_k.

For such hypergraphs, the minimal t with $\rho_H \in \mathcal{D}_t$ is $\chi(G_H)$.

This applies to the set E of lines, and subsets X_i of sets of lines through a point, in an affine plane, and many other examples.

Similar results, with different machinery (going further with incidence sets), apply to projective planes and other examples.
Conclusions and a question

We can construct excluded minors for the class \mathcal{D}_k from projective and affine planes, and from many other structures, so finding the excluded minors for \mathcal{D}_k in general is not reasonable.

In particular, giving a complete list of the excluded minors for each \mathcal{D}_k would require settling classical problems like for which orders projective planes exist.

We revealed a direction for extending graph coloring to polymatroids. Can one extend the theory of flows?
We can construct excluded minors for the class \mathcal{D}_k from projective and affine planes, and from many other structures, so finding the excluded minors for \mathcal{D}_k in general is not reasonable. In particular, giving a complete list of the excluded minors for each \mathcal{D}_k would require settling classical problems like for which orders projective planes exist.

We revealed a direction for extending graph coloring to polymatroids. Can one extend the theory of flows?

Thank you for listening.