The failure of the February 2019 Hanoi Summit between US President Donald Trump and North Korea’s leader Kim Jong-un surprised few in the expert community. For most experts, the question has never been if negotiations with North Korea would fail, but when.¹ The United States wants North Korea to surrender nuclear weapons, and North Korea needs nuclear arms. The underlying incompatibility between the American and North Korean positions had to surface sooner or later.

What, then, can the United States do to eliminate the threat of a nuclear North Korea? Hawkish voices advocate a military solution, but with the current advancement of North Korea’s nuclear arsenal, a military solution would be a dangerous one. Others prefer tightening sanctions, but economic sanctions alone are unlikely to coerce North Korea into nuclear disarmament. Still others insist on a mixture of deterrence, diplomacy, and containment—a sound strategy to preserve peace, but one equally unlikely to disarm Pyongyang’s small nuclear arsenal.² Fortunately, preserving peace for a few years should be enough.

Consequently, the most promising policy toward North Korea is a return to strategic patience: a low-cost strategy of loss minimization. The United States will not concentrate its effort on denuclearization but rather on avoiding conflict and maintaining the status quo. Two expectations underpin this policy. First, the consequences of any action the United States can reasonably take will not be better than the status quo. Second, development will allow for better solutions in the future.
The United States practiced strategic patience with North Korea during eight years of the Obama administration. This policy then received heavy critique. Critics rightly pointed out that, using strategic patience, the United States was waiting for North Korea’s collapse, but such a collapse has never been likely. North Korea not only avoided collapse but, while the United States waited patiently, North Korea developed its nuclear arsenal. The rationale for new strategic patience, however, differs from the previous policy.

While unfounded expectations of North Korea’s forthcoming collapse underpinned the previous iteration of strategic patience, the renewed strategic patience is grounded in much more realistic assumptions about the approaching maturity of emerging counterforce technologies like new sensors, hypersonic weapons, or automated target recognition. These technologies will likely make North Korea’s nuclear arsenal irrelevant. For North Korea, maintaining a survivable nuclear arsenal will soon require engaging in an arms race between new US counterforce technologies and North Korean force protection. It would be a costly arms race with extremely low prospects for North Korean success. Consequently, a bargain with the United States will become the rational choice for North Korea’s leadership. Moreover, if a deal cannot be worked out, a military solution will be much safer tomorrow than it is today.

The Inevitable Expansion of North Korea’s Nuclear Arsenal

Strategic patience cannot stop the expansion of North Korea’s nuclear arsenal, yet no other policy can—at least within the limits of reasonable risks. Pyongyang’s nuclear program has advanced despite all previous US policies which have attempted to stop it. On September 3, 2017, Pyongyang successfully tested an advanced nuclear weapon with a yield estimated at hundreds of kilotons of TNT. North Korea has very likely mastered miniaturization of nuclear weapons and can combine a nuclear warhead with a missile. Furthermore, North Korea’s tests in July 2017 have demonstrated that its new missiles can reach the US homeland. After decades of effort, North Korea can now credibly claim it has acquired what it has desired for so long—since early 2018, it has the United States within reach of North Korean nuclear weapons.

It is not entirely clear how Pyongyang plans to use its nuclear weapons in war. Unlike some other nuclear states, North Korea does not publish any official

North Korea can now credibly claim it has the US within reach of DPRK nuclear weapons.
nuclear doctrine. Until recently, North Korea likely practiced a catalytic strategy: with only a few nuclear weapons, the main role of the arsenal rested in Pyongyang’s ability to rattle its nuclear saber, which was designed to prompt China’s intervention on Pyongyang’s behalf. Vipin Narang, associate professor of political science at MIT, argues, however, that with the post-2017 expansion of its nuclear arsenal, North Korea’s nuclear strategy changed to asymmetric escalation—to use its nuclear weapons early in any conflict with the United States or South Korea to destroy US and allied bases in South Korea, Japan, and Guam.

North Korea has relied on a similar conventional (non-nuclear) strategy of asymmetric escalation since at least the early 1990s. Between 1989 and 1992, both Russia and China normalized their relations with South Korea. Abandoned by Cold War allies, Pyongyang recognized that it could not defeat US forces once they reached the Korean peninsula. During the 1990s, North Korea reorganized its army into an offensive weapon intended to attack preemptively, destroying or taking the possible entry point before US reinforcements arrive. The strategy is a direct extension of North Korea’s painful experience from the Korean War. In the summer of 1950, victory narrowly eluded North Korea because they were unable to take the port of Pusan quickly enough; they learned the lesson.

The conventional balance, however, has not been moving in North Korea’s favor. The chances that North Korea would be able to execute a successful conventional operation against South Korea have declined significantly since the 1990s. Subsequently, nuclear weapons have offered a much-needed alternative. Shorter-range nuclear weapons can be used to destroy the entry point for US reinforcements while new intercontinental ballistic missiles (ICBMs) hold US cities hostage and prevent US nuclear retaliation.

North Korea’s nuclear arsenal, however, must meet two requirements to make this strategy a credible option. First, it must be capable of destroying the US and allied military bases as well as entry points, which US reinforcements would need to enter the theater early in the conflict. Second, North Korea needs a survivable second-strike capable force to hold US cities hostage. North Korea’s arsenal will almost certainly soon meet these requirements. Publicly available estimates put the size of North Korea’s nuclear arsenal between 10 and 60 nuclear devices, although it is uncertain whether some of these weapons are operational and deployed with the Korean People’s Army. In the last few years, however, North Korea has demonstrated remarkable progress and surprised the international community with advances in nuclear weapon and ballistic missile technologies. It is not unwarranted to expect that in the foreseeable future, North Korea may acquire a reasonably robust, moderate-sized nuclear arsenal with 50 to 100 nuclear devices.
This arsenal will almost certainly rely on land-based ballistic missiles for delivery. Most of the ballistic missiles North Korea currently deploys—including the Hwasong-15, North Korea’s newest ICBM—use land-based mobile missile launchers also known as TELs (transport erector launchers) as a launching platform. North Korea might supplement land-based ballistic missiles with rudimentary submarine-launched missiles. Currently, North Korea is developing a Bukgeukseong-1 submarine ballistic missile for its diesel-electric Sinpo-class submarine. Both TELs and ballistic missile submarines (SSBNs) can effectively conceal their position and move to another position if spotted, making them difficult to destroy preventively. This concealment makes it difficult for US forces to enter North Korea and holds bases and entry points at risk and US cities hostage.8

The Counterforce Effect

No US policy short of an immediate counterforce strike can stop the advancement of North Korea’s nuclear arsenal. The February 2019 Hanoi Summit clearly showed the limits of US options. North Korea will not agree to any deal which requires it to disarm, and North Korea’s nuclear arsenal is survivable enough to make a counterforce strike too risky. North Korea has adequate technologies and has made enough fissile material to develop a reasonably robust nuclear arsenal. If Pyongyang’s nuclear weapons development keeps at the current pace, it will likely deploy a nuclear force of some 50 to 100 warheads, including mobile land-based missiles and submarine-launched ballistic missiles, in the next five years.

North Korea’s nuclear deterrence, however, will likely be an elusive one. Nuclear weapons are the most destructive tools humankind has ever developed, yet a nuclear bomb is far from being cutting-edge military technology. The United States introduced the first fission bomb in 1945 and the first fusion bomb in 1952. A Soviet R7-rocket, the world’s first ICBM, flew for the first time in 1957. North Korea is six to seven decades behind. It is attempting to impress the twenty-first century world with vintage World War II-era technology. Even though no weapon has more destructive power than a nuclear weapon, technological progress has not stood idly by since the time of B-29 bombers and Sherman tanks.

The consequences of technological progress open up new opportunities for counterforce attacks—those aimed at destroying nuclear weapons before they can be launched. Georgetown Assistant Professor Kier A. Lieber and Dartmouth Associate Professor Daryl G. Press described the current changes as “the new era of counterforce.”9 Largely enabled by the computer revolution, the
new technologies enormously improve remote sensing and the accuracy of weapons systems. Together, these improvements create a problem for the survivability of nuclear forces. Remote sensing allows a would-be attacker to find and target the other side’s nuclear weapons, while accuracy allows the reliable destruction of targeted weapons without much collateral damage.

Importantly, modern remote sensing technologies undermine concealment, which is a key North Korean strategy to protect its nuclear forces. Lieber and Press calculated that US radar satellites now monitor 90 percent of North Korea’s road network every 90 minutes, 54 percent of North Korea’s road network can be constantly monitored with US UAVs (unmanned aerial vehicles) stationed outside of North Korea’s airspace if needed in a crisis, and 97 percent of North Korea’s roads can be monitored if four US UAVs penetrate North Korea’s airspace and supplement those operating outside of DPRK airspace. For North Korea, concealment is becoming increasingly difficult.

The development of counterforce technologies will not stop. Whereas all nuclear powers will need to address technologically-enabled challenges to the survivability of their nuclear arsenals, North Korea is in a particularly unfavorable position. Should the new offense-defense arms races between first-strike forces and survivable arsenals occur, North Korea would be racing from a disadvantageous position. US strategic patience would thus benefit from North Korea’s unfavorable position in future arms races in a way that it wasn’t able to in the past, before counterforce technologies had developed.

Emerging Technologies on the Horizon

In the foreseeable future, technological progress will likely make North Korea’s nuclear arsenal more suitable for a museum than for deterrence. Several technologies, which are already being explored, will create a substantial challenge for North Korea’s second-strike capable nuclear posture.

First, the improvements in remote sensing are likely to continue, effectively reducing the opportunities to hide. The US Defense Advanced Research Projects Agency (DARPA)—which was previously responsible for technological breakthroughs such as precision weapons, stealth technology, the Internet, or GPS receivers small enough to embed in myriad consumer devices—is supporting several projects which might result in further improvements in remote sensing. For instance, one of DARPA’s projects is Video Synthetic...
Aperture Radar, which aims to provide high-resolution, full-motion video for engaging moving ground targets in all-weather conditions. Another of DARPA’s projects, “SeeMee,” is developing small satellites to give individual US warfighters on-demand satellite imagery, and DARPA’s “Ocean of Things” program seeks to enhance maritime situation awareness by deploying thousands of low-cost floats with a suite of sensors. When deployed, the new sensors will enhance the already impressive flow of information available to those analysts who seek to identify nuclear forces and provide necessary targeting information for a counterforce mission.

Currently, analysts are unable to utilize all targeting information for a counterforce mission because new intelligence, surveillance, and reconnaissance technologies provide more data than the analysts can go through. Existing sensors already substantially reduce the fog of war, and an enormous amount of data from the battlefield is available to commanders in real time, yet the data overwhelm the recipient. In the future, the second stream of technological innovation, which is currently being developed, will likely bring the solution.

Artificial intelligence (AI) will enhance analysis and, in the future, allow for automated target recognition. Early possibilities for using artificial intelligence as an aid to targeting are already being seen. In the United States, Project Maven has provided a computer-based tool for rapid analysis of drone footage. Artificial intelligence helps analyze enormous volumes of video data from drones, which analysts in the Department of Defense would not be able to go through on their own. Similar AI-based tools will likely emerge for other sources of data such as satellites. DARPA’s projects provide a useful illustration of what is being developed. Their “Geospatial Cloud Analytics” program is developing technology to use up-to-date commercial and open source satellite imagery and analyze data from these sources with automated machine learning tools. If implemented together with new sensors, the targets of a counterforce mission will not only be swiftly detected by the new sensors, but also quickly identified in the stream of data the sensors produce.

Third, hypersonic weapons will give a would-be attacker the ability to destroy nuclear weapons before they can be launched. Hypersonic weapons travel at a speed of approximately 5,000 to 25,000 kilometers per hour. At such speed, they can easily penetrate defenses and give the defender minimal time to react. The speed itself also gives hypersonic weapons significant kinetic destructive power even when a hypersonic weapon lacks any explosive warhead. Several
countries including the United States, Russia, and China are currently developing hypersonic weapons. The US Air Force has recently awarded Lockheed Martin an almost one billion USD contract to build a prototype of a hypersonic cruise missile. Traveling at least seven times faster than current Tomahawk cruise missiles, hypersonic cruise missiles would be ideal for a counterforce strike.

Each of the technologies above is a substantive challenge to the survivability of any country’s nuclear forces. An even greater challenge will emerge when these technologies combine into joint counterforce systems. That modern intelligence and reconnaissance technologies can be combined with weapon systems to acquire and subsequently destroy targets quickly is beyond any doubt. In Ukraine, Russian forces have reportedly combined UAVs and artillery to form a deadly mix. Ukrainian forces have reported that “once they identify a lowflying (under 1,000 ft) UAS [unmanned aircraft system], they have between 10–15 minutes before their position will be hit with accurate artillery fire.” The performance of the Russian artillery in Ukraine is a meager illustration of what a combination of new targeting technologies and accurate weapon systems can achieve.

On the horizon, it is entirely possible to imagine a system that puts together advanced sensors and AI-enabled automated target recognition with hypersonic weapons. A combination of sensors will then be able to detect and track all major military systems on the ground and send a massive flow of information to be automatically analyzed by computers for target recognition which can then, in turn, be immediately used to attack the newly acquired targets with hypersonic weapons.

Implications for North Korea

If deployed against North Korea in a hypothetical US disarming counterforce strike, the system could theoretically render useless even DPRK weapons that survive the first strike, hidden beyond the reach of sensors in protected positions such as in tunnels under mountains. It is entirely imaginable that in such a scenario, the United States would destroy most of North Korea’s nuclear weapons on the ground or bury them in tunnels, where they could not be used. Some of North Korea’s TELs hidden deep in previously unidentified tunnels under the protection of Korea’s northern mountains would survive a preventive first strike. Today, this ability to hide TELs in protected positions and launch them after the strike is absorbed constitutes a robust second-strike force. Yet, for a second strike, a TEL needs to leave the protection of a tunnel to launch its missile.

In the hypothetical scenario above, when a TEL leaves the tunnel, it would in the near future be detected by sensors, identified by automated target recognition,
and targeted by a follow-on hypersonic cruise missile launched from a submarine, ship, or aircraft operating outside of North Korea’s borders. How long it would take for a North Korean TEL to launch a ballistic missile is not publicly known, but Russia’s most advanced RS-24 YARS reportedly needs seven minutes to prepare a missile for launch. It is rather safe to assume that North Korean TELs do not perform better than their Russian counterparts. So, a hypersonic cruise missile traveling at an average speed of 5,000 km/h would need three and a half minutes to travel roughly 300 kilometers from outside of North Korea’s borders to a target in North Korea’s remote mountainous northern region, the assumed location of its nuclear weapons. That leaves three minutes to detect and identify the target and launch a counterforce mission. Human analysts would need hours, if not days, to detect and identify the target, but if computers make detection and identification in such a short time possible, North Korea’s most survivable delivery vehicles would not be considered second-strike capable.

Similar processes that undermine the survivability of land-based mobile missiles affect the survivability of nuclear submarines. For years, anti-submarine warfare (ASW) relied on acoustic noise generated by a submarine to detect it. North Korea’s diesel-electric submarine might be difficult to locate acoustically. ASW detection techniques under development, however, do not use acoustic signals to find submarines. The improved speed of computers allows running detailed oceanographic models in real time. Such models can see small changes in the environment caused by a submarine. Other possibilities in ASW include using lasers and light-emitting diodes in a similar manner to active sonar. These systems can now overcome previous material and computer control limitations to work at wavelengths that significantly increase operationally useful detection. The new underwater detection techniques will also benefit from a range of new platforms including unmanned underwater vehicles (UUVs). The exact impact on ASW remains uncertain, but the trend is clear: new technologies will allow seeing what was previously hidden. Like TELs, SSBNs have poor prospects of surviving a confrontation if they can be detected.

Last, another stream of technological innovation might finally allow missile defense to deliver on its promise. Most current missile defense systems are believed to be ineffective against North Korea’s ballistic missile threats. Yet, a new approach can bring a more effective solution. In their 2018 study, for instance, James E. Goodby of Carnegie Mellon University and Theodore A. Postol of MIT proposed a system specifically designed to eliminate the threat.
posed by North Korea’s new ICBM capability. The proposed system combines existing anti-ICBM interceptor technologies with the MQ-9 Reaper long-endurance UAV. UAVs with anti-ICBM interceptors would operate over the Sea of Japan or the Yellow Sea, well outside North Korea’s airspace, and destroy North Korea’s ICBMs in the early stage of flight when ICBMs are bulky, relatively slow, and incapable of deploying decoys. Admittedly, this system is only at the stage of an initial idea. However, it illustrates an important opportunity to eliminate North Korea’s ICBM threat to the United States.

The now envisaged combination of UAVs and anti-ICBM interceptors, two systems that have been developed separately and for different purposes, also shows that unforeseen combinations of technologies will likely emerge. As individual technologies mature, they can be combined in previously unexpected ways into joint systems which could bring unforeseen consequences for deterrence. Even though not all of the technologies described above might completely fulfill their promise, the trend is clear: existing force protection strategies will soon be insufficient to guarantee the survivability of nuclear arsenals.

Counterforce-Survivability Arms Races

None of the above-mentioned technological innovations indicate that North Korea is incapable of keeping a survivable nuclear arsenal. History has sufficiently demonstrated that in the realm of warfare, countermeasures for most technologies will arrive sooner or later. For North Koreans, however, keeping a second-strike capable nuclear arsenal when the United States develops technologies with enormous potential for counterforce missions means being involved in an arms race between US first-strike capabilities and the DPRK’s countermeasures.

Arms races between counterforce and survivability in the realm of nuclear deterrence are nothing new. The development of ICBMs in the 1950s put previously unprotected nuclear forces in danger and necessitated the deployment of better early warning systems, hardened ICBM silos, and ballistic missile submarines in the 1960s. Improved accuracy and MIRVed missiles in the 1970s threatened the survivability of fixed targets like ICBM silos, leading nuclear states to rely more on concealed systems like mobile land-based missiles and submarines. Countermeasures are again already being developed and deployed to address these new challenges to survivability.

For instance, as concealment provides less certain protection in the age of new sensors, Russia has abandoned its plans to retire hardened ICBM silos. Instead, Moscow plans to deploy new Sarmat missiles in hardened silos, which will be
protected by the Mozyr active protection system. Mozyr features 100 artillery pieces that will fire a cloud of steel against any incoming warhead or cruise missile, making the attacking missile explode a few kilometers away from the Sarmat silo, enough to allow the silo to survive.

Options exist to protect other systems as well. When ballistic missile submarines become detectable in the vast oceans and consequently vulnerable to anti-submarine warfare, ballistic missile submarines can take refuge in bastions close to their country’s shore—a strategy the Soviet Union used in the Cold War when it learned that the United States was able to shadow the Soviet Navy’s noisy ballistic missile submarines in the open ocean. The combined forces of land-based defenses and aircraft can help protect ballistic missile submarines against an adversary’s attacking forces in these bastions.

North Korea’s Contemporary Disadvantage

Various possibilities will certainly emerge for nuclear powers to develop better protection for their nuclear arsenals. Not all nuclear powers will, however, have the same possibilities, and not all of them will have equally favorable conditions to develop new protective strategies and technologies. Of all the existing nuclear powers, North Korea is the least likely to succeed in the counterforce-survivability arms race.

First, geography disfavors North Korea. North Korea is a relatively small country with a long coastline. Even the most remote areas of the country are only 200–300 kilometers from international waters and airspace where a would-be attacker could deploy sensors and weapon platforms. In contrast, Russia’s ICBM bases in remote regions of Siberia are 2000 or 3000 kilometers from international airspace. Even a hypersonic weapon would need significant time to destroy a target in Siberia. A weapon traveling at hypersonic speed would, however, reach its target in North Korea in a few minutes. Similarly, thanks to the country’s small geography, sensors based outside of North Korea’s borders can monitor much of its land even without “Star Wars-like” technological breakthroughs.

Second, North Korea’s economy is far from being able to support an arms race. Pyongyang can only compete in a race where countermeasures are significantly cheaper than counterforce technologies. North Korea’s industrial and scientific base is limited. The progress North Korea made with nuclear weapons and ballistic missiles is certainly impressive, but it should not shroud the country’s
limitations. North Korea can ill afford to keep its nuclear and ballistic missile programs as well as simultaneously invest in modern weapons systems to race against new counterforce-enabling technologies and protect its nuclear arsenal.

Compounding Conventional Lessons

The limits of North Korea’s industrial and scientific base are clearly illustrated by the development of North Korea’s conventional forces. The Korean People’s Army (KPA) paid significant opportunity costs for the nuclear program. Almost no major modern conventional systems have been introduced into the KPA between 1994 and 2018—the period when North Korea pumped resources into its nuclear and ballistic missile programs. In the major systems—main battle tanks (MBTs), self-propelled artillery, multiple launch rocket systems (MLRS), and fighter/ground attack jets—the only new technologies North Korea deployed in 1994–2018 were the indigenous Chonma and Pokpoong MBTs and KN-09 MLRS. Furthermore, these new MBTs are believed to be little more than upgrades of outdated Soviet T-62s. Only the KN-09 rocket artillery system is believed to be reasonably up to date, because the development of KN-09 could have benefited from North Korea’s missile program.

North Korea’s failure to introduce new, modern weapons is especially notable because South Korea has introduced new state-of-the-art types among all major weapons systems since 1994. South Korea not only deployed new systems including K1A1 and K2 MBTs, K-9 Thunder self-propelled howitzers, the US M-270, indigenous K239 Chunmoo heavy MLRSs, and US F-15 and indigenous FA-50 jets, but also significantly increased the quantitative strengths of its forces. Moreover, South Korea at least partially resolved the vulnerability of Seoul in 1996 when the Republic of Korea Army acquired counterbattery radar, which it lacked in 1994. North Korea has had strong reasons to reverse the relative decline of its conventional power, but it has failed to react to South Korea’s conventional buildup.

Three important observations can be taken from the development of North Korea’s conventional forces from 1994 to 2018. First, several pundits have cautioned that a preventive strike on North Korea is impossible since the resulting conventional war would result in unacceptable casualties. My own research, in fact, has shown that the threat of conventional retaliation against Seoul was critical in keeping a US preventive strike at bay during the 1994 nuclear crisis. North Korea’s conventional deterrence has, however, deteriorated significantly since 1994. The DPRK’s conventional protective shield, which provided critical protection in the period between the early 1990s when the Soviets and (to a lesser degree) Chinese abandoned North Korea and 2006 when North Korea tested its first nuclear bomb, is gradually weakening.
Most of North Korea’s major weapons platforms, which were nearly obsolescent in 1994, though still useful against similarly aged South Korea’s equipment, are desperately obsolete in 2018, while the South Korean military has become better-equipped.

Second, conventional decline has major implications for North Korea’s ability to employ an asymmetric escalation strategy. Asymmetric escalation requires acting upon warning. Other states that depended on this strategy, such as France in the Cold War and Pakistan after 1998, could count on their ability to observe an enemy’s conventional preparations for an attack. However, the weaker the KPA becomes, the fewer reinforcements the United States needs to deploy in Korea. In 1994, Washington decided that it must first deploy tens of thousands of troops to Korea before a preventive attack on Pyongyang’s nuclear program becomes an option. It would be exactly such a deployment that might trigger North Korea’s asymmetric escalation. Soon, however, the United States could execute a preventive strike without any warning if conventional balance in Korea does not require US reinforcements.

Third, the relative decline of North Korea’s conventional power has most likely been caused by a lack of resources. Reliable data about North Korea’s economy and military are impossible to acquire, but existing estimates are illustrative enough to show the burden the nuclear program puts on the country’s economy. The estimates put the annual development and maintenance costs of North Korea’s nuclear program somewhere below one billion USD. This relatively meager sum is huge for North Korea. At one billion a year, the nuclear program costs North Korea a quarter of its defense budget, which itself is roughly a quarter of the country’s GDP. How North Korea would finance an arms race to beat new counterforce technologies in addition to the already existing fiscal burden is difficult to imagine.

From the 1990s until today, the North Korean leadership demonstrated significant managerial skills when it managed to squeeze resources from an impoverished country in order to achieve progress in nuclear weapons and ballistic missile technologies. But developing countermeasures to new counterforce systems will require accepting challenges in entirely different fields, where North Korea has little experience and where it might not be able to emulate others. However impressive North Korea’s nuclear program might be, at least for a poor and isolated country, North Korea has only developed decades-old technologies. Most industrial countries would be able to develop what North Korea has in a few years if they decided to do so. It is highly questionable whether North Korea could muster the resources to join the race to develop the cutting-edge technologies of the future such as AI, nanomaterials, biotechnologies, and quantum computing. If it doesn’t, its existing nuclear posture could soon become obsolete.
US Strategic Patience Moving Forward

Ongoing and foreseeable technological changes have major policy implications for US strategy toward the North Korean nuclear threat. Most importantly, US policy on North Korea will greatly benefit from strategic patience. There should be no rush to push for North Korea’s nuclear disarmament. Military action against North Korea would be unwise, unless in traditional preemption: Washington acting on credible information that North Korean nuclear aggression is imminent. Such North Korean aggression is more than unlikely. Kim Jong-un is certainly well aware that using nuclear weapons would end his regime and most likely his own life. North Korea’s leaders might be brutal dictators who have blatantly violated human rights on a scale hardly comparable with any other country, but North Korea also appears to be a relatively responsible custodian of nuclear weapons—to be otherwise would not be in North Korean leaders’ best interest.

The logic of asymmetric escalation strategy and the pressure of the growing vulnerability of North Korea’s nuclear arsenal, however, create a dangerous mix. North Korea will soon not be able to enjoy the luxury of accepting a US strike first and retaliating second. Driven by “use it or lose it” logic, Pyongyang might launch its nuclear weapons preemptively even on an ambiguous warning. US extended deterrence should be strengthened with this threat of inadvertent escalation in mind. While Washington needs to keep its military footprint in the region as part of its extended deterrence strategy, it should shun steps that Pyongyang might misread as a prelude to US attack. Actions like overflying B-1 bombers near North Korea’s coast should be immediately avoided.

Diplomacy will also be a critical part of a policy returning to strategic patience to take advantage of developing counterforce technologies. First, diplomacy and containment are critical starting points to avoid unnecessary conflict with a nuclear North Korea. The DPRK is extremely unlikely to use its nuclear arsenal as long as Pyongyang does not feel a US attack is imminent. Diplomacy should thus reassure the North Koreans that, indeed, no attack is imminent. Second, diplomacy should slowly work toward a negotiated North Korean disarmament. There is, however, no need to rush the negotiated disarmament, even if it remains the ultimate goal of US policy. To that end, the failure to reach an agreement during the February 2019 Hanoi Summit might be the right decision. No deal is better than a bad deal when the United States knows its position will improve in the future.

Time will reduce the benefits a nuclear arsenal brings to North Korea. North Korea developed nuclear weapons to secure the survival of its regime, but for regime survival, its nuclear arsenal is a double-edged sword. North Korea’s nuclear arsenal guarantees the hostility of the United States, yet the arsenal
only guarantees regime survival when the arsenal itself remains survivable. Its nuclear arsenal will be meaningless if North Korea fails in a possibly very expensive offense-defense arms race which is emerging on the horizon.

The United States will continue to develop new technological means to destroy North Korea’s arsenal in a first strike. Sooner or later, such technologies will arrive, and North Korea will have to develop countermeasures. North Korea can, however, only develop cheap force protection strategies. Historically, some force protection strategies have been cheap, but others have been expensive. A road-mobile missile launcher costs a few million dollars, but a single nuclear-powered ballistic missile submarine can cost more than North Korea’s annual defense budget. In the future, cheap strategies might not suffice.

North Korea cannot be certain it can succeed in a counterforce-force protection arms race with the United States. In a world of rapidly developing counterforce technologies, North Korea has good reason to trade its elusive deterrence before it becomes meaningless. Sooner or later, the costs and risks of keeping its nuclear arsenal will outweigh its benefits. If regime survival is Kim Jong-un’s goal, his best strategy would be to surrender nuclear weapons in the future.

Consequently, patience should be a centerpiece of the US approach to North Korea’s nuclear threat. Washington has little to lose and much to gain by strategic patience. If time fails to bring a negotiated disarmament and things go awry, the US president would be better positioned to have emerging counterforce technologies available.

Notes

8. Kristensen and Norris.

