Announcements
I have not scheduled any meetings for the growing season. If you would like me to check a field or teach you how to scout a field, just contact me.
Aaron Gabriel, 518-380-1496, adg12@cornell.edu

FYI
Next week you will receive a survey to help me determine if we should develop a simple phone app for field crop farmers to manage their crops. Farmers with field crops, please take time to fill it out. You can get an overview of crop software I have found on the web at, http://blogs.cornell.edu/capitalareaagandhortprogram/category/field-crops/. I think we need software for folks new to technology.

2018 Cornell Guide to Integrated Field Crop Management is available from the Cornell Store, https://store.cornell.edu/c-875-pmep-guidelines.aspx, or give me a call to order a copy. This gives yearly pesticide recommendations, and recommendations for seeding rates, fertilizers, variety selection, tillage, lime recommendations, and more.

If you missed any ProDairy Webinars they can be viewed at https://prodairy.cals.cornell.edu/webinars.

There are several new “What’s Cropping Up?” articles from Cornell faculty. Go to, http://blogs.cornell.edu/whatscroppingup/
The Hay Manual is online at, http://blogs.cornell.edu/capitalareaagandhortprogram/hay-manual/

"Nutrient Cycling in Pastures," a newly updated ATTRA publication, examines the pathways and drivers that move nutrients into, out of, and within pasture systems.

The NWNY Dairy Management Specialist position has been posted; the posting will expire on Monday, April 30th or until the position is filled. The links to the posting are:

Cornell Careers: http://tiny.cc/Dairy_WDR_00014141
Academic Jobs Online (AJO): https://academicjobsonline.org/ajo/jobs/10981

The latest issue of the Dairy Culture Coach is now available and includes the following articles:

- Tools to Learn Spanish
- Cooling Vocabulary
- How to Identify the “Off” Animal
- Identifique el Animal Anormal
- Wednesday Webinars in Spanish
- Seminarios Web en Español

You can access the newsletter here: here: https://nwnyteam.cce.cornell.edu/submission.php?id=734&crumb=bilingual|13

Forage Crops: Plants are starting to grow. Once the ground is firm enough for machinery, nitrogen can be put onto grass fields. From 25 lbs to 100 lbs of actual N depending on how much growth you want. Too much growth will make it hard to dry hay. Use a urease inhibitor if rain is more than a day away. One-half inch of rain will wash urea into the soil. It is good to include some ammonium sulfate to supply about 15 lbs/year of sulfur.

Snow mold may be an issue this year. Reseeding may be necessary if stands are completely killed. You will dead white (moldy) grass laying flat over mushy grass clumps.

Check alfalfa for winterkill and winter damage. Look for dead or slowly emerging areas of fields. Split the roots in half to look for alfalfa brown root rot. If you find any, please call me. We want to monitor its presence. Read more at https://www.extension.umn.edu/agriculture/forages/pest/docs/umn-ext-brown-root-rot-of-alfalfa.pdf. Specimens can be tested at Cornell. Read more about evaluating alfalfa stands at https://extension.psu.edu/assessing-your-alfalfa-stand-this-spring?
j=204125&sfmc_sub=25490375&l=159_HTML&u=3944639&mid=7234940&jb=7

Will spring weather allow us to plant hay crops? It is best to seed grasses by mid-May and alfalfa & clover by the end of May. Although, planting in early to mid-April really makes a difference. You have options if the weather does not cooperate. In late May or early
June you can plant summer annuals (teff, BMR sudangrass, BMR sorghum-sudan, buckwheat) and then plant hay in mid-August.

Small Grains: It is time to check winter grains for their winter survival. Knowing the plant population and yield potential will help you fine-tune the amount nitrogen to apply. Penn State has short article on how to do this—https://extension.psu.edu/wheat-stand-assessment-1?
j=208173&sfmc_sub=25490375&l=159_HTML&u=4014605&mid=7234940&jb=7

To fine tune seeding rates for grains, we need to take into account the seeds per pound. North Dakota has a good table to help you fine tune seeding rates for small grains at https://www.ag.ndsu.edu/crops/spring-wheat-articles/optimal-seeding-rates. And Mike Stanyard has a 2017 video on this as well, https://www.youtube.com/watch?v=GPtWp1yEKAQ&feature=youtu.be

Gary Bergstrom (Cornell Univ. Field Crop Pathologist) is advising us to keep an eye out for stripe rust in wheat. “Stripe rust of wheat was confirmed in western Kentucky at Feekes stage 7 this week. If epidemics develop early in mid-South regions, we could experience earlier than usual arrival of airborne spore showers in New York this year. There is no basis to predict stripe rust risk at this early time in the growing season, but I will keep you informed of further developments in states to our South and West.” Read his article at http://blogs.cornell.edu/whatscroppingup/2017/06/06/stripe-rust-a-new-challenge-to-wheat-yield-in-new-york/

Also from Gary: “This is a good time to sign up for Fusarium head blight alerts in 2018 by email or text message. You can sign up by accessing the US Wheat and Barley Research Initiative website: (http://scabusa.org/fhb_alerts). By checking the box for Northern Soft Winter Wheat, you will receive alerts for Michigan, New York, Vermont, and Wisconsin. I will provide commentary on FHB risk for winter wheat, winter barley, and spring barley in New York during the pre-flowering through early grain-filling stages for each crop, primarily in June. The alerts are tied to Penn State’s weather-driven, map-based, FHB risk tool (http://www.wheatscab.psu.edu/riskTool.html) that I suggest all small grain producers become acquainted with.”

Managing Forage Quality in Hay for Better Marketing
Aaron Gabriel, Cornell Cooperative Extension, 4/2018

A thorough understanding of hay quality is needed to market it well. Marketing is finding buyers whose needs match the product you have. There is more than just color, smell, and texture to hay quality. By understanding hay quality and understanding the needs of livestock, we can thoughtfully market hay and be successful. An excellent article on forage quality can be found at https://fyi.uwex.edu/forage/files/2017/04/FQ.pdf. The nutritional needs of livestock vary greatly. Horses with metabolic challenges may need hay low in sugars. Those with poor teeth need soft hay. Lactating animals need a highly digestible hay, while non-lactating animals may have nutritional needs just for maintenance. Dry cows need hay low in potassium. Freshening animals need lots of calcium. Finishing beef animals on just grass requires forage that is high in energy, but not too high in protein. Animals that get excess protein (lush pasture, early cut legumes and grasses) waste energy because the liver works overtime to metabolize the excess protein. That is how the Atkins diet works. Trefoil is getting new attention because
of its effectiveness in reducing internal parasites in livestock. In this article, I want to point out some ways that we can manage hay quality. Our management from variety and field selection to harvesting and storage all affect hay quality.

Plant maturity probably has the greatest effect on hay quality. Plus there is no harvest cost difference between cutting earlier or later. Although, annual yield can decrease with several closely spaced cuttings. As grasses and broadleaf plants go from the vegetative to the flowering stage, the amount of lignin (aka wood, digestible by termites, but not livestock) increases rapidly, and so does fiber in general. For high fiber digestibility (and high “total digestible nutrients”) grass needs to be cut in the vegetative to early boot stage. Not all animals need this type of hay. It will be high in protein and possibly sugars. In 2017, the year of never ending rain, first cutting for many occurred in July and August. In that situation first cutting and second cutting are combined in one harvest. Once plants complete the reproductive phase (flowering), they put on more vegetative growth. So, a forage analysis of August cut hay may say you have lots of indigestible fiber (old first cutting). However, animals may sort out the stemmy hay and just eat the soft hay in the bale. What an animal is eating may not match what the forage analysis measured. For over-wintering beef cattle and horses, mature hay may be quite suitable.

Grasses mature at different times. Day-length is the main factor that affects when grasses flower, but head (speeds it up) and drought (slows it down) also have an influence. Maturity from earliest to latest, is first Kentucky bluegrass > orchardgrass > tall fescue/meadow fescue/brome grass/ perennial ryegrass > timothy. Some years harvest will simply be late – that’s the hay business. I know a farmer that uses a Macerator (intense conditioner using a roller-mill mechanism). It takes course hay and softens it up, as well as helping it dry faster. Coarse reed canarygrass becomes palatable. Extra conditioning (Macerating) of young hay may be enough to make it palatable for that old horse.

For alfalfa / grass mixtures, select a grass to match the alfalfa (or clover) maturity, so that they are both at the optimum maturity at harvest.

Select the species of hay based on when you are able to harvest first cutting. On wet soils, where early harvest is difficult, select later maturing species (timothy, meadow fescue, red clover, trefoil). Also, smooth bromegrass and trefoil hold their quality better as they mature compared to other species. There

Crop species has a major impact on hay quality. Alfalfa (properly harvested) provides very good nutrition for animals that need it. Alfalfa does have more soluble protein compared to clovers and trefoil. Too much soluble protein does not get digested efficiently by ruminants. Of course horse owners avoid clover hay, because it is hard to dry and more likely to be dusty. Red and Ladino clover hay may also be infected with a particular fungus (*Rhizoctonia*), that can cause horse slobbers. Trefoil has tannins, a chemical that has shown to reduce internal parasites. Sheep and goat owners are concerned about internal parasites.

The fiber in alfalfa is less digestible than the fiber in grasses (due to the arrangement of lignin and cellulose). We often use Relative Feed Value (RFV) as a measure of forage quality. This measure does not recognize the higher digestibility of grass fiber, so grasses are under-estimated in RFV. Relative Forage Quality (RFQ) is a more accurate measure of grass quality because it recognizes the better digestibility of grass fiber. Digestion does get complicated. Alfalfa fiber digests more rapidly than grass fiber. Among the grasses, meadow fescue has the highest digestibility of fiber. You can develop a hay product targeted for a particular nutritional need.

In the northeast, the many different species of cool-season grasses that we grow are not created equal. There has been recent interest in meadow fescue, because it has the most digestible fiber among our cool-season grasses. Its leaf curls a bit when dried, so it is kind of “wirey” as a dry hay. Also it grows little in the summer heat. Perennial and annual ryegrass are high in sugars. Their waxy leaves make them hard to dry for hay, so baleage is preferred. Smooth bromegrass holds its quality very well as it reaches maturity. Like bromegrass, timothy makes a
nice leafy hay. Neither of them grow well in summer heat. They are good choices for two-cut systems. Or-
chardgrass grows the best in summer heat and makes a nice hay. Reed canarygrass is very leafy, but can get very
stalky if first cutting is delayed. Perhaps mature reed canarygrass can take the place of straw when fiber is needed
in a total mixed ration. Orchardgrass and reed canary grass both respond to high nitrogen fertilization and can be
cut multiple times during the year. Kentucky bluegrass has high quality but traditional varieties have low yield. I
think we ignore that Kentucky bluegrass can be very high quality, and the narrow leaves and low yield allow it to
dry faster.

Tall fescue is best suited for haylage. It has a tough leaf texture, but some varieties have very good fiber digesti-
bility. For haylage, it responds to nitrogen fertilizer, yields well, is winter-hardy, and tolerates heavy soils. CAU-
TION! Only use endophyte-free or novel enophyte tall fescue. Other tall fescue have a fungus that lives within
the plant (endophyte), which produces toxic chemicals (alkaloids). These chemicals cause abortions, edema, and
disrupt body temperature regulation. Livestock will often stand belly deep in water to regulate their temperature.
Do not use Kentucky 31 for livestock. That variety is for lawns.

Selecting a grass species should first be determined by its soil adaptation and then by its end use. Grass species
have different adaptations to soil drainage. From poorly-drained to well-drained, they are reed canarygrass >
meadow fescue > timothy > tall fescue > Kentucky bluegrass > ryegrasses/smooth bromegrass > orchardgrass. In
very wet soils where only reed canarygrass is adapted, accept the fact that first cutting may often be over-mature
and secure the appropriate market or use (bedding, low nutritional needs, straw replacement, chopped before feed-
ing). When the best nutrition is needed choose grasses with good fiber digestibility (meadow fescue) and high
sugar (ryegrasses). For horses needing low sugar diets, ryegrass is a poor selection.

Harvest management greatly impacts forage quality at every step of the hay-making process. Leaves have
most of the protein, simple carbohydrates, digestible fiber, and minerals. Alfalfa and grass leaves can be lost by
poor machinery management and by raking, tedding, or baling when the hay is too dry. Properly adjust machinery
travel speed and pto speed so that the hay is worked gently. Leaf loss increases greatly once the hay reaches 35%
moisture. Rake before 35% moisture and finish drying it in a fluffy windrow. Tines and pick-up teeth set too low
will add soil to the hay. If your forage analysis shows greater than 10% ash, then you may have soil contaminat-
ing your hay. This is especially bad for baleage, since it will contaminate the forage with Clostridia bacteria which
will ruin the fermentation. Harvest management is critical to retaining hay quality.

For metabolically-challenged horses, you can intentionally lose nutrients to make low-sugar hay. When plants are
mowed, the cells are still actively respiring (consuming sugars). Plant respiration will stop when the plants dry to
about 40% moisture. If plants are left in a tight windrow for a day before tedding, it will slow the drying process
and increase the loss of sugar. Also, if the harvest is heavy, it will take longer to dry (and lose more sugar) than a
light harvest (ie second cutting). Another method is after a warm night, mow in the morning after most of the dew
is gone. Plant sugar content will be low. Then do not rush drying the first day (tight windrows), so more sugars
can be consumed. Of course, you need time to complete drying the hay.

To retain the most nutrients, mow after a few hours of sunlight (late morning) and dry the hay as fast as possible.
Fertilizing too heavy in the spring will make so much first cutting yield, that it will be hard to dry quickly. You
really have to think through the entire process.

Environment impact forage quality in many ways. We cannot control the amount of sunshine, moisture,
temperature, elevation, or day-length. However, if we know how the environment impacts forage quality, we can
understand how the forage can be properly marketed. Table 1 is a summary of how the environment affects for-
age quality. Often many factors are at play at the same time, so it is hard to predict the final forage quality. A
forage analysis is really needed to be certain of the quality you end up with. Generally, the long cool days of
spring result in high fiber digestibility and high sugars. Late-summer hay, with cool temperatures and short days,
is usually highly digestible, high in protein, but low in sugars.
Table 1. General Environmental Effects on Grass & Alfalfa Forage Quality

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool Temperatures</td>
<td>Increase fiber digestible</td>
<td>Less lignin, more leafy</td>
</tr>
<tr>
<td>High Temperatures</td>
<td>Less fiber digestibility</td>
<td>More lignin, more stem,</td>
</tr>
<tr>
<td>Drought (moderate)</td>
<td>Improved fiber quality</td>
<td>Delayed maturity, less stem, less</td>
</tr>
<tr>
<td>Cloudiness</td>
<td>Low sugar content</td>
<td>Less photosynthesis</td>
</tr>
<tr>
<td>Long day-length</td>
<td>More sugar content</td>
<td>More photosynthesis</td>
</tr>
</tbody>
</table>

“Seasonal Forage Quality of Twelve Cool-Season Grasses Used for Pasture” is a good article to show the seasonal effects on forage quality (http://www.midwestforage.org/pdf/552.pdf.pdf).

Soil fertility affects quality by supplying minerals, affecting plant health, affecting the legume mix with a grass, and it affects hay competitiveness with weeds. Proper soil fertility has a positive effect on hay quality. A soil test is the first step to managing soil fertility and is a tool to manage forage quality as well. Excess or an im-balance of nutrients can cause an imbalance of minerals in the hay, which may affect animal health. Diseased plants will have lower nutrition, typically less protein, simple carbohydrates, and fiber quality. Fertilizing a legume/grass mix with nitrogen can cause the grass to out-compete the legume. Weeds will increase when a hay stand lacks nutrition and vigor. Some weeds make good forage, but we try to avoid them.

Potassium is probably the most common nutrient in excess in soils. It will reduce magnesium and possibly copper uptake in plants. Excess manure can lead to an excess of soil potassium. Dry cows need low-potassium hay. This can be produced on coarse soils by not using manure and fertilizing with nitrogen. Typically summer-time harvests are lower in potassium (when the soil is dry).

We are now finding sulfur deficiencies in our soils because there is less acid rain. Sulfur is important for plants to produce protein. Manure, ammonium sulfate, gypsum, and sul-po-mag can be used to supply sulfur. Fiber animals need sulfur for good fiber quality and yield. Legumes are higher in protein than grasses. So selecting the right species and fertilizing properly can produce a hay tailored to fiber production.

Variety selection is becoming more important in managing forage quality since we have grass varieties with a wider range of maturity, and alfalfa with special traits (low-lignin, potato leafhopper resistance, leafiness, herbicide resistance). For first cutting, early-maturing varieties will always have better fiber quality than late-maturing varieties. This is because the plants mature under cooler temperatures earlier in the season. The varieties of orchardgrass and timothy have a wider range of maturities than the other grass species.

Alfalfa has several traits that affect its quality. Low-lignin varieties do have better forage quality because the fiber is higher in digestibility. Other traits are also important. Potato leafhopper resistant varieties not only yield better, but also have better quality when this insect is abundant. Disease resistance traits also affect alfalfa quality by maintaining plant health. Herbicide resistant varieties can help with weed control help you produce weed-free hay for the demanding customer.

In summary, you make several management decisions that affect hay quality. Hay comes in a great variety of types and quality. As you manage and identify its qualities each year, you can “market” your hay for its best use.

Milk Pricing Discussion

Aaron Gabriel, Cornell Cooperative Extension

Milk prices once again are hurting farmers. It is a frustrating thing to see. I hope the following thoughts will somehow bring on a discussion that will actually create change. As an Extension Educator, I have been preaching “efficiency” for 22 years. Efficiency is not “the answer”. I cannot change the milk price. However, we live in a democracy (functioning, even if it does have issues), and really, only dairy farmers can solve this problem.
Farmers have to figure out a solution that is acceptable to milk handlers and retailers, and propose it to legislators. Farmers have the organizational infrastructure to do this.

To fuel a discussion, I have put together some numbers and some thoughts. The accompanying spreadsheet shows what farmers already know, milk handlers make more profit when there is an over-supply of milk; even when they have to dump a percentage of it. This is a simplistic spreadsheet (below), but it illustrates the point that it is in the interest of milk handlers to have an oversupply of milk. Only farmers can control the milk supply. That is why I think the solution has to come from farmers.

If a handler pays a farmer $0.20/lb for 1 million pound of milk, and the handler sells all the fluid milk at 75% of retail price, the processor makes $121,802.

If there is an over-supply, and the farmer gets paid $0.15/lb, and the handler dumps 5% of the milk, the handler makes more profit, $155,712.

The lower the wholesale price of milk is (as a percentage of the retail price), the handler makes a greater proportion of profit compared to the farmer.

I am like most people, and do not fully understand how the milk really pricing system works. My understanding is that the government sets the rules and pricing formulas, then collects data about milk supply and product prices to calculate the milk price. I know that it is complicated, political, and does not meet farmers’ needs. Because milk pricing is based in government policy (as I understand it), we need a democratic process initiated by farmers to change it.

Policies are usually based on politics – who gets what. Instead, we need policies (and a milk price) based on sound principles. Here are some thoughts/principles.

For market stability, the supply of a product needs to match the demand. Producing a milk supply to exactly match demand is impossible. So, pay farmers a profitable price for a base quantity of milk – a quantity that is below demand (about 5 million lbs/year/farm). Milk above that quantity will be paid based on market price.

Handlers should pay the prices to farmers and retail customers should pay the fair retail price to reflect the reality of milk production costs. Government support should not be used, except for natural disasters.

Of course, the “profitable price” and the base quantity will be haggled. The base quantity should be the same for the entire country. The “profitable price” will vary by region.

Some farms may not be able to survive, even with the profitable price.

If you set the base quantity to 5 million pounds (around 200 cows), it will ensure that small farms get a profitable price. According to 2012 USDA statistics, that will cover 46% of milk cows. (https://agcensus.usda.gov/Publications/2012/Full_Report/Volume_1_Chapter_1_US/s99_1_017_019.pdf).

Milk beyond the base quantity, will be priced according to market demand. Farmers will have to manage the supply to match market demand as best as possible – a big change for farmers.

I hear some farmers complain about poor milk promotion. This is an issue that needs to be understood better. More communication is needed between the milk promotion board and farmers to resolve any issues.

Allowing the economic basis of the farm economy to be based solely on production efficiency and economies of scale is harmful to farm stability, social well-being, and an independent farm economy.

The natural Darwinian laws of nature (survival of the most fit) need not apply to our economic and social well-being. We make choices and chose which principles we live by. We can all live together comfortably.

There is a benefit and need to having small and modest-sized farms to support a healthy agricultural infrastructure.

When fewer people have the opportunities to be involved in agriculture (because there are only a few farms), un-discovered talent is lost.

The cheap food policy is not cheap. It is paid for indirectly by tax-payers. This is un-popular and subject to political manipulation.

It is wrong to ask someone to produce your food and not pay them a reasonable price for it. This takes away the control they should have over their business and well-being.
Such a change will probably hurt some dairy farms that have a high cost of production. Also, the retail price of milk and products may go up. However, that reflects the reality of the efficiency of how farms need to perform. And it reflects what customers need to pay for milk. I hope these thoughts lead to a worthwhile discussion and action. It is only in the farmers’ interest to have a profitable milk price, so the solution has to come from farmers. It will not come from anyone else.

Milk handlers benefit from an oversupply of milk, even when they have to discard a portion of it.

<table>
<thead>
<tr>
<th># milk</th>
<th>farmgate milk price/lb</th>
<th>% milk marketed</th>
<th>% milk discarded</th>
<th>Processor $ to farmer</th>
<th>Wholesale % of retail</th>
<th>retail price $/gal</th>
<th>Processor Income wholesale minus farmgate price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>0</td>
<td>0.20</td>
<td>100</td>
<td>0</td>
<td>75</td>
<td>3.69</td>
<td>$121,802</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.15</td>
<td>95</td>
<td>5</td>
<td>75</td>
<td>3.69</td>
<td>$155,712</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.15</td>
<td>90</td>
<td>10</td>
<td>75</td>
<td>3.69</td>
<td>$139,622</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.15</td>
<td>85</td>
<td>15</td>
<td>75</td>
<td>3.69</td>
<td>$123,532</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.15</td>
<td>80</td>
<td>20</td>
<td>75</td>
<td>3.69</td>
<td>$107,442</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.16</td>
<td>95</td>
<td>5</td>
<td>75</td>
<td>3.69</td>
<td>$145,712</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.16</td>
<td>90</td>
<td>10</td>
<td>75</td>
<td>3.69</td>
<td>$129,622</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.16</td>
<td>85</td>
<td>15</td>
<td>75</td>
<td>3.69</td>
<td>$113,532</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.16</td>
<td>80</td>
<td>20</td>
<td>75</td>
<td>3.69</td>
<td>$97,442</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.17</td>
<td>91</td>
<td>9</td>
<td>75</td>
<td>3.69</td>
<td>$122,840</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.17</td>
<td>90</td>
<td>10</td>
<td>75</td>
<td>3.69</td>
<td>$119,622</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.17</td>
<td>85</td>
<td>15</td>
<td>75</td>
<td>3.69</td>
<td>$103,532</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.18</td>
<td>98</td>
<td>2</td>
<td>75</td>
<td>3.69</td>
<td>$135,366</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.18</td>
<td>95</td>
<td>5</td>
<td>75</td>
<td>3.69</td>
<td>$125,712</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.18</td>
<td>94</td>
<td>6</td>
<td>75</td>
<td>3.69</td>
<td>$122,494</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0.18</td>
<td>93</td>
<td>7</td>
<td>75</td>
<td>3.69</td>
<td>$119,276</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>3.69</td>
<td>$0</td>
</tr>
</tbody>
</table>