Building Strong and Vibrant New York Communities

Cornell Cooperative Extension provides equal program and employment opportunities.

Capital Area Ag Report
July 25, 2013

When questioned about his odd look, Einstein said, “It would be a sad situation if the wrapper were better than the meat wrapped inside it.”

Announcements

2013 DAIRY TOUR

Dutch Hollow Jerseys—Chittenden family
Wednesday, August 14, 1 to 3 pm
101 Running Creek Rd., town of Kinderhook
High-quality milk marketed in unique ways.
Family partners in a Jersey herd focused on breeding
Market high-quality milk to local name-brand processors
Experience at fostering good neighbor relations

PLEASE BE PROMPT
Please RSVP so we have enough materials & refreshments for you. Contact Katie Close (kec98@cornell.edu, 518-925-5806) or Aaron Gabriel (adg12@cornell.edu, 518-380-1496).

July 31, 2013 - Perennial Biofeedstock Energy Tour and Presentations—at the USDA NRCS Big Flats Plant Materials Center, Big Flats, New York. For more information and to register please go to the following website.

The “Ag Report” is prepared by Aaron Gabriel

Capital Area Agricultural & Horticulture Program Staff

Sandra A. Buxton
Farm Business Management

Aaron Gabriel
Crops and Soils

Tom Gallagher
Livestock Production & Marketing

Steve Hadcock
New Farmer / Market Development

Chuck Schmitt
Commercial Horticulture (Greenhouse, Nursery, Landscape)

Regional Fruit Specialist
Kevin Iungerman

Capital District Vegetable and Small Fruit Program
Chuck Bornt
Laura McDermott
Crystal Stewart

Announcements

July 31, 2013 - Perennial Biofeedstock Energy Tour and Presentations—at the USDA NRCS Big Flats Plant Materials Center, Big Flats, New York. For more information and to register please go to the following website.

Building Strong and Vibrant New York Communities
Cornell Cooperative Extension provides equal program and employment opportunities.
Weather Data—July 25, 2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Rain</th>
<th>GDD 86/50</th>
<th>GDD 41</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Past Week</td>
<td>This Month</td>
<td>Since April 1<sup>st</sup></td>
</tr>
<tr>
<td>Granville</td>
<td>2.9</td>
<td>4.1</td>
<td>16.1</td>
</tr>
<tr>
<td>Whitehall</td>
<td>Argyle</td>
<td>2.0</td>
<td>6.7</td>
</tr>
<tr>
<td>Jackson</td>
<td>2.2</td>
<td>6.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Easton</td>
<td>1.4</td>
<td>6.0</td>
<td>25.5</td>
</tr>
<tr>
<td>Alb. Airport</td>
<td>0.7</td>
<td>4.1</td>
<td>21.5</td>
</tr>
<tr>
<td>Guilderland</td>
<td></td>
<td>191</td>
<td>1601</td>
</tr>
<tr>
<td>Castleton</td>
<td>4.4</td>
<td>5.6</td>
<td>20.2</td>
</tr>
<tr>
<td>Hudson</td>
<td>2.4</td>
<td>3.7</td>
<td>15.1</td>
</tr>
<tr>
<td>Redhook</td>
<td>0.9</td>
<td>2.6</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Thanks to Landview Farms, LLC for a great dairy tour.
Making Organic Waste Products
Work for You

Cornell Waste Management Institute, Cornell Cooperative Extension and Cortland County Soil and Water Conservation District are sponsoring a workshop and facility tour August 6-7, 2013. The workshop will be held at the NYS Grange Headquarters, 100 Grange Place, Cortland, NY. Some of topics to be covered: What makes a good compost?, Site setup, maintenance and permitting, and Compost quality.

See the brochure (http://cwmi.css.cornell.edu/augevent.pdf) for more information and registration.

The word for the 2013 growing season is VARIABILITY! I took pictures of these two fields, in the same town, on the same day this week.

This humungous corn is 10’ 8” tall and it still has four leaves wrapped around the tassel. It is growing on Hamlin soil (our best in NY) with lots of rain since late May. It fell over in a storm, but the real problem is a small root system (photo on the next page) and a soft soil
from all the rain. I could just about dig the soil with my bare hands.

Here is the root system of the tall corn. It fits within the area of my shovel.

The next picture below is typical of other fields that have less than perfect soil. Some plants are okay, and others are just plain sad.

One thing that I learn from this is that corn has a tremendous ability to grow when factors are not limiting. The corn on the Hamlin soil had another three feet or more to grow—that is a lot of silage.

Another observation is that come harvest time, corn will have variable maturity and variable moisture. Using an inoculant is more important in these challenging harvest situations. Also, at harvest, wait until the average moisture of the field is 68%, rather than waiting for the most mature plants to be at the correct moisture, and the rest of the field too wet.

Corn: Corn is from V4 stage to silking. I am not as pessimistic about the crop as I was earlier in the season. Some fields have really turned around.

Keep an eye out for diseases. Gray leaf spot and northern corn leaf blight have been reported.

Corn rootworm are beginning to emerge. I have found the root-feeding larvae in the soil and adults flying around. They were the western corn rootworm (WCR).

Corn rootworm larva (above) will soon pupate in the soil, then emerge as an adult beetle.

Western (left) and northern (right) corn rootworm adults

If you have an average of one WCR per plant or two NCR per plant, then they are laying enough eggs in that particular field, that next year eggs will hatch and larvae emerge and cause economic damage to corn crop. The solutions are to rotate the field out of corn; use an in-furrow insecticide; use the 1250 dose of a seed-applied insecticide (Gaucho, Cruiser); or use a transgenic corn specifically with rootworm protection.

This is a good year to take an inventory of weeds in the field. It has been a difficult year controlling weeds. Knowing what you
have now, will help you make good decisions next year. Herbicides are getting more specific as to what they control. So, you need to know exactly what grass or broadleaf weed is plaguing you.

See the corn fungicide chart at the end of this newsletter.

Grasses: Thanks to Jeff Zelna (Syngenta) for correcting me, in that there is a fungicide labeled for diseases of grasses used for forage—Quadris.

We are at the last time you should apply nitrogen to grasses to increase yield (before third cutting). If you apply nitrogen in September or later, grasses may go into the winter too succulent and not harden off. This could bring on winter kill.

Alfalfa: There are still many potato leafhoppers out there. Scout your fields to find hot spots. Harvest or spray fields that have a PLH infestation. Be careful that they do not all migrate in mass to a nearby un-harvested field.

What to do with failed alfalfa seedings?:
- Interseed red clover (and grass if needed) before Sept. 15, for a two—three year stand.
- Fall plow and seed in the spring
- Interseed oats for fall forage

Soybeans: Walk fields and look for aphids, potato leafhoppers, diseases, and weeds. If soils do not dry out, we should get a decent yield. Moisture in August is critical for soybean yield. There is a soybean fungicide chart at the end of this newsletter.

Pasture: Grazing is a low-cost way to feed livestock. Grazing as late into the fall as possible is good economics. So, now is the time to plan which paddocks you will graze, rest, or plant to a fall crop like rape, oats, turnips, triticale.

Cattle Flies: There is no silver bullet to managing flies. More than any other pest, you need an integrated approach: sanitation to reduce maggots; and traps and insecticides to reduce adults.
Management of Corn Diseases in New York
Fungicide Efficacy for Control of Corn Diseases — July 2013

This information was adapted for New York by Gary C. Bergstrom, Cornell University, from information developed by the Corn Disease Working Group (CDWG) on fungicide efficacy for control of major corn diseases in the United States. Efficacy ratings for each fungicide listed in the table were determined by field testing the materials over multiple years and locations by the members of the committee. Efficacy ratings are based upon level of disease control achieved by product, and are not necessarily reflective of yield increases obtained from product application. Efficacy depends upon proper application timing, rate, and application method to achieve optimum effectiveness of the fungicide as determined by labeled instructions and overall level of disease in the field at the time of application. Differences in efficacy among fungicide products were determined by direct comparisons among products in field tests and are based on a single application of the labeled rate as listed in the table. Table includes systemic fungicides available that have been tested over multiple years and locations. The table is not intended to be a list of all labeled products. Efficacy categories: NR = Not Recommended, P = Poor, F = Fair, G = Good, VG = Very Good, E = Excellent; NL = Not Labeled for use against this disease; -- = Insufficient data to make statement about efficacy of this product for this disease.

<table>
<thead>
<tr>
<th>Fungicide(s)</th>
<th>Class</th>
<th>Active ingredient (%)</th>
<th>Product/Trade name</th>
<th>Rate/A (fl oz)</th>
<th>Anthracnose leaf blight</th>
<th>Common rust</th>
<th>Eyespot</th>
<th>Gray leaf spot</th>
<th>Northern leaf blight</th>
<th>Southern rust</th>
<th>Harvest Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoI Strobilurins Group I</td>
<td>Azoxytopicin 22.0%</td>
<td>Quadris 2.08 SC</td>
<td>6.0 - 15.5</td>
<td>VG</td>
<td>E</td>
<td>VG</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>7 days</td>
<td></td>
</tr>
<tr>
<td>Pyclostrobins 23.6%</td>
<td>Headline 2.09 EC/SC</td>
<td>6.0 - 12.0</td>
<td>--</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>VG</td>
<td>E</td>
<td>7 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMI Triazoles Group 3</td>
<td>Propiconazol 41.8%</td>
<td>Tilt 3.6 EC</td>
<td>2.0 - 4.0</td>
<td>NL</td>
<td>VG</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Prothioconazol 41.0%</td>
<td>Prolin 480 SC</td>
<td>5.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>VG</td>
<td>G</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed mode of action</td>
<td>Azoxytopicin 7.0% Propiconazol 11.7%</td>
<td>Quit 1.66 SC</td>
<td>7.0 - 14.0</td>
<td>NL</td>
<td>VG-E</td>
<td>E</td>
<td>E</td>
<td>VG</td>
<td>VG</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Azoxytopicin 13.5% Propiconazol 11.7%</td>
<td>Quit Xcel 2.2 SE</td>
<td>10.5 - 14.0</td>
<td>VG</td>
<td>VG-E</td>
<td>VG-E</td>
<td>E</td>
<td>VG</td>
<td>VG</td>
<td>30 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyclostrobins 13.6% Metconazol 5.1%</td>
<td>Headline AMP 1.68 SC</td>
<td>10.0 - 14.4</td>
<td>--</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>VG</td>
<td>VG</td>
<td>20 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifloxystrobins 32.3% Prothioconazol 10.8%</td>
<td>Stratego YLD 4.18 SC</td>
<td>4.0 - 5.0</td>
<td>VG</td>
<td>E</td>
<td>VG</td>
<td>E</td>
<td>VG</td>
<td>VG</td>
<td>30 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Additional fungicides are labeled for disease on corn, including contact fungicides such as chlorothalonil. Certain fungicides may be available for diseases not listed in the table.

2 Harvest restrictions are listed for field corn harvested for grain. Restrictions may vary for other types of corn (sweet, seed or popcorn, etc.), and corn for other uses such as forage or fodder.

3 Aerial application in New York is allowed except within 100 feet of an aquatic habitat.

4 Aerial application is not allowed in New York.

Many products have specific use restrictions about the amount of active ingredient that can be applied within a period of time or the amount of sequential applications that can occur. Please read and follow all specific use restrictions prior to fungicide use. This information is provided only as a guide. It is the responsibility of the pesticide applicator by law to read and follow all current label directions. Reference to products in this publication is not intended to be an endorsement to the exclusion of others that may be similar. Persons using such products assume responsibility for their use in accordance with current directions of the manufacturer. Members or participants in the CDWG assume no liability resulting from the use of these products.
Management of Soybean Diseases in New York
Fungicide Efficacy for Control of Foliar Soybean Diseases—July 2013

This information was adapted for New York by Gary C. Bergstrom, Cornell University, from information developed by the North Central Regional Committee on Soybean Diseases and the Regional Committee for Soybean Rust Pathology (NCERA-212 and NCERA-208) on foliar fungicide efficacy for control of major foliar soybean diseases in the United States. Efficacy ratings for each fungicide listed in the table were determined by field-testing the materials over multiple years and locations by the members of the committee. Efficacy ratings are based upon level of disease control achieved by product, and are not necessarily reflective of yield increases obtained from product application. Efficacy depends upon proper application timing, rate, and application method to achieve optimum effectiveness of the fungicide as determined by labeled instructions and overall level of disease in the field at the time of application. Differences in efficacy among fungicide products were determined by direct comparisons among products in field tests and are based on a single application of the labeled rate as listed in the table, unless otherwise noted. Table includes systemic fungicides available that have been tested over multiple years and locations. The table is not intended to be a list of all labeled products. Efficacy categories: NR=Not Recommended; P=Poor; F=Fair; G=Good; VG=Very Good; E=Excellent; NL = Not Labeled for use against this disease.

<table>
<thead>
<tr>
<th>Class</th>
<th>Active Ingredient (%)</th>
<th>Product/Trade name</th>
<th>Rate/ A (ft oz)</th>
<th>Aerial web blight</th>
<th>Anthracnose</th>
<th>Brown spot</th>
<th>Cercospora leaf blight</th>
<th>Frogeye leaf blight</th>
<th>Phomopsis/ Diaporthe (Pod and stem blight)</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Harvest restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoI</td>
<td>Azoxystrobin 22.9%</td>
<td>Quadris 2.08 SC</td>
<td>6.0 - 15.5</td>
<td>VG</td>
<td>VG</td>
<td>G</td>
<td>F</td>
<td>VG</td>
<td>_*</td>
<td>G-VG</td>
<td>P</td>
<td>14 days</td>
</tr>
<tr>
<td>QoI</td>
<td>Pyraclostrobin 23.6%</td>
<td>Headline 2.09 EC</td>
<td>6.0 - 12.0</td>
<td>VG</td>
<td>VG</td>
<td>G</td>
<td>F</td>
<td>VG</td>
<td>_*</td>
<td>G-VG</td>
<td>NL</td>
<td>21 days</td>
</tr>
<tr>
<td>OTI</td>
<td>Cyproconazole 8.5%</td>
<td>Alfo 100SL</td>
<td>2.75 - 5.5</td>
<td>_*</td>
<td>_*</td>
<td>VG</td>
<td>_*</td>
<td>_*</td>
<td>_*</td>
<td>VG</td>
<td>NL</td>
<td>30 days</td>
</tr>
<tr>
<td>OTI</td>
<td>Flutisal 11.8%</td>
<td>Topguard 1.04 SC</td>
<td>7.0 - 14.0</td>
<td>_*</td>
<td>VG</td>
<td>VG</td>
<td>F</td>
<td>VG</td>
<td>_*</td>
<td>E</td>
<td>G</td>
<td>21 days</td>
</tr>
<tr>
<td>DM</td>
<td>Proiconazole 41.8%</td>
<td>Tilt 3.5 EC</td>
<td>4.0 - 6.0</td>
<td>P</td>
<td>VG</td>
<td>G</td>
<td>NL</td>
<td>F</td>
<td>NL</td>
<td>VG</td>
<td>NL</td>
<td>RS (beginning seed)</td>
</tr>
<tr>
<td>DM</td>
<td>Profloconazole 41.0%</td>
<td>Proline 480 SC</td>
<td>2.5 - 4.3</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>VG</td>
<td>NL</td>
<td>VG</td>
<td>G</td>
<td>21 days</td>
</tr>
<tr>
<td>MCI</td>
<td>Thiophanate-methyl</td>
<td>Topcin-M Multiple Generics</td>
<td>0.5 - 1.0 lb</td>
<td>_*</td>
<td>_*</td>
<td>_*</td>
<td>F</td>
<td>VG</td>
<td>_*</td>
<td>G</td>
<td>G</td>
<td>21 days</td>
</tr>
<tr>
<td>Class</td>
<td>Active ingredient (%)</td>
<td>Product/Trade name</td>
<td>Rate/A (fl oz)</td>
<td>Aerial web blight</td>
<td>Anthracnose</td>
<td>Brown spot</td>
<td>Cercospora leaf blight</td>
<td>Frogeye leaf spot</td>
<td>Phomopsis/ Damping (Pod and Stem blight)</td>
<td>Soybean rust</td>
<td>White mold</td>
<td>Harvest restriction</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>SDHI Carboximides Group 7</td>
<td>Boscalid 70%</td>
<td>Endura 0.7 DF</td>
<td>3.5 – 11.0</td>
<td>NL</td>
<td>VG</td>
<td>P</td>
<td>NL</td>
<td>NL</td>
<td>G</td>
<td>21 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed mode of action</td>
<td>Azoxytrobin 18.2%</td>
<td>Quadris Top 2.77 SC</td>
<td>8.0 – 14.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>VG</td>
<td>--</td>
<td>NL</td>
<td>14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difenoconazole 11.4%</td>
<td>Amistar SC</td>
<td>14.0 – 20.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>VG</td>
<td>--</td>
<td>NL</td>
<td>21 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Azoxytrobin 7.9%</td>
<td>拌种剂 mastering 1.66 SC</td>
<td>10.5 – 21.0</td>
<td>E</td>
<td>VG</td>
<td>G</td>
<td>VG</td>
<td>--</td>
<td>NL</td>
<td>21 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propiconazole 11.7%</td>
<td>Quilt Xcel 2.2 SE</td>
<td>4.0 – 4.05</td>
<td>VG</td>
<td>VG</td>
<td>VG</td>
<td>F</td>
<td>--</td>
<td>VG</td>
<td>21 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Some fungicides not in this table may be labeled for soybean rust only, powdery mildew, and alternaria leaf spot. Contact fungicides such as chlorothalonil may also be labeled for use.
2. Cercospora leaf blight efficacy relies on accurate application timing, and standard R3 application timings may not provide adequate disease control. Fungicide efficacy may improve with later applications.
3. Fungicides with a solo or mixed QoI mode of action may not be effective in areas where QoI-resistance has been detected in the fungal population that causes frogeye leaf spot.
4. White mold efficacy is based on an R1 application timing, and lower efficacy is obtained at an R3 application timing, or if disease symptoms are already present at the time of application.
5. Harvest restrictions are listed for soybean harvested for grain. Restrictions may vary for other types of soybean (edamame, etc.) and soybean for other uses such as forage or fodder.
6. Insufficient data is available at this time to make statements about efficacy of these products for diseases listed in the table.
7. No Table use, or distribution of Topguard in Nassau or Suffolk Counties in New York.
8. Prolin has a supplemental label (2ee) for soybean, only for use on white mold in IL, IN, IA, MI, MN, NE, ND, OH, SD, WI. A separate 2ee for New York exists for white mold.
9. Stratego YLD has a supplemental label (2ee) for white mold on soybeans only in IL, IN, IA, MI, MN, NE, ND, OH, SD, WI but not in New York.
10. Aerial application in New York is allowed except within 100 feet of an aquatic habitat.
11. Aerial application is not allowed in New York.

Many products have specific use restrictions about the amount of active ingredient that can be applied within a period of time or the amount of sequential applications that can occur. Please read and follow all specific use restrictions prior to fungicide use. This information is provided only as a guide. It is the responsibility of the pesticide applicator by law to read and follow all current label directions. Reference to products in this publication is not intended to be an endorsement to the exclusion of others that may be similar. Persons using such products assume responsibility for their use in accordance with current directions of the manufacturer. Members or participants in the NCGRA-212 or NCGRA-208 group assume no liability resulting from the use of these products.