Building Strong and Vibrant New York Communities
Cornell Cooperative Extension provides equal program and employment opportunities

Capital Area Ag Report
April 18, 2013

“What we do to the land, we do to ourselves.”
— Wendell Berry

Announcements
Wednesday, April 24, 2013 Adding Value When Marketing Your Livestock from 7:00 pm – 8:30 pm. At CCE-Washington County Office Annex II Meeting Room, 411 Lower Main Street, Hudson Fall, New York 12839. There will be a $5.00 charge per farm at the door to cover mailing and handout costs. Please contact Gale Kohler @ 518-765-3500 or gek4@cornell.edu if you plan on attending this meeting.

Topics for discussion will include:
* Where and how you are currently marketing your livestock
* How satisfied are you with your current markets
* Ways to analyze potential new markets
* How to seek out new markets and how to determine the needs of those markets
* Market trends
* Advertising your product

Speakers and discussion leaders for this meeting will be: Steve Hadcock – Small Farm Specialist, CAAHP; Tom Gallagher – Livestock Specialist, CAAHP; Morgan Hartman – Black Queen Angus Farm, Direct Marketer.

Tuesday, May 7, 1 — 2:30pm — Winter Forage Field Day — at Foothill Farm (Bill Gorsky) on Vly Summit Rd., 1/10 mile north of Rte 40, in Easton, Washington Co. Discuss the challenges of fall ‘12 harvested oats; winter triticale before spring harvest; forage quality of winter forages; getting good fermentation; getting more yield per acre; utilizing wet fields. Please RSVP so I can print enough handouts, Aaron Gabriel, 518-380-1496, adg12@cornell.edu.
Weather Data—April 16, 2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Rain Past Week</th>
<th>This Week</th>
<th>Since April 1</th>
<th>GDD 86/50 Past Week</th>
<th>Since April 1</th>
<th>GDD 41 Past Week</th>
<th>Since April 1</th>
<th>GDD 48 Past Week</th>
<th>Since April 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granville</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>12</td>
<td>30</td>
<td>22</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whitehall</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>10</td>
<td>29</td>
<td>23</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Argyle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackson</td>
<td>1.8</td>
<td>2.1</td>
<td>2.1</td>
<td>23</td>
<td>45</td>
<td>38</td>
<td>71</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Easton</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>14</td>
<td>31</td>
<td>21</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alb. Airport</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
<td>14</td>
<td>32</td>
<td>27</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guilderland</td>
<td>0.1</td>
<td>1.1</td>
<td>0.1</td>
<td>13</td>
<td>32</td>
<td>26</td>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Castleton</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>16</td>
<td>39</td>
<td>31</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hudson</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>20</td>
<td>48</td>
<td>34</td>
<td>48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Redhook</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>23</td>
<td>56</td>
<td>38</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Wednesday, May 8, 1—2:30 pm—Winter Forage Field Day— at Stanton (Dairy) Farms, Coeyman’s Hollow. Triticale field is on Rte 32, just east of LeGrange Ln, at the intersection of Rte 32 and Winne Ln. Discuss triticale and other winter forages; forage quality; getting more per acre; getting good fermentation; utilizing wet fields. Please RSVP so I can print enough handouts, Aaron Gabriel, 518-380-1496, adg12@cornell.edu.

FYI:
A note from Dr. Harold van Es, Cornell, about Adapt-N, a web-based tool to help you adjust rates of nitrogen side-dress on corn, based on local rain and temperature data.:
“A note about the recently updated NRCS 590 standard for New York, which is posted at http://efotg.sc.egov.usda.gov/references/public/NY/nyps590.pdf. I understand that there is confusion among many people, especially the TSPs, about the use of Adapt-N for nitrogen rate recommendations in corn production.

Use of the Adapt-N tool is definitely within the standard, and the NRCS offers a payment scenario under EQIP for adaptive nutrient management for 2013 that requires the use of the Adapt N tool. The payment is $24.31/ac. It requires the implementation of basic nutrient management in addition to the Adapt N tool to assess further N needs. This payment is higher than the basic nutrient management rate of $13.51/ac.”

Winter Forages: Harvesting fall oats was tricky business last year. We will talk about the challenges at our Winter Forage Field Days in May. Growth is just beginning in our winter rye and winter triticale. I will sample and compare forage quality of these two crops just before harvest in May. These crops will dry out wet soils before corn or soybeans are planted.
Alfalfa: The winter was kind to alfalfa stands. I have seen only a little heaving of plants in wet spots. We are on the look-out for alfalfa brown rot across New York. A root and crown rot whose symptoms include slow spring emergence and winterkill. If you suspect this disease, please give me a call.

Grasses: It takes about 50 lbs of nitrogen to produce a ton of forage. At current prices, that is about $25. Plus, N will boost protein in the grass so you can feed less soybean meal. If a field does not get manure or has low organic matter, then it may also be low in sulfur. Ammonium sulfate can supply sulfur. Having sufficient sulfur is also important for plants to make protein.

Nitrogen stabilizers help prevent nitrogen from being lost as ammonia from urea (urease inhibitors, like Agrotain); and as nitrous oxide in water logged soils (denitrification inhibitors, N-serve, Instinct). It takes just a few days to lose 40% of the N (40% X $25 = $10 lost) by topdressing urea without a 1/2 inch to wash it in. N losses begin in about 6 hours. Urease inhibitors can pay when topdressing urea.

Pasture: It is still to early to let animals graze. Think of the plant. Right now root reserves are being used to make new leaves so that they can capture the sunlight. There are no leaves yet to do any work. If you graze off these young leaves, then more root reserves will be used up, and the plant will not be able to use the sunlight, because the new leaves keep getting grazed off. So, be patient. Begin grazing when bluegrass is 4 inches tall, and orchardgrass and other tall species are 6 inches tall. Especially let plants have a recovery time in early spring if they were grazed hard last fall.

Be sure to graze bluegrass down to 3 inches and orchardgrass and other tall species down to 4 inches.

Corn: Seedling insects (cutworm, seedcorn maggot, wireworm, grubs) are like a silent killers. They reduce your corn population without you knowing as you work long hours to complete field work. With the help of Berne/Knox/Westerlo biology students, we found that the 250 dose of seed applied insecticide was not even controlling seedcorn maggot. Keep track of seedling corn, especially early planted fields; high organic matter fields; corn following sod; and fields historically with high cutworm or other damage.

Should you broadcast or band fertilizers for corn. It depends on the fertility level of the soil and the volume of roots needed to take up the fertilizer. In low fertility soil, the root volume may not be big enough to take up all the fertilizer if it is only in band, particularly large amounts of potassium. Potassium may need to be broadcast and then banded for the seedling. Phosphorus is easily tied up at low fertility or acid soils, so banding is usually the method. In fertile soils, the roots can spread out into a larger soil volume and find the nutrients needed. Banding a small amount for early growth is most appropriate.

Do you have a hard soil layer somewhere at the 6 to 12 inch depth? Breaking that hard layer is one way to practice risk management. If the weather is too wet or too dry, that hard layer will stop water from moving to where it needs to be. Deep vertical tillage (zone-builder type implement) has had good reviews from every farmer that I talk to that uses it. There are plenty of zone-builders around, so you should be able to hire a neighbor to run a few strips in your field to see if it will work in your soil. Don’t let such a simple operation cost you a couple tons or several bushels of yield.

If you are using a zone-builder in corn grain residue, the advice is to run the front coulter 3 inches deep. Then comes the deep shank, which should go an inch below any hard layer (12 to 14 inches usually). Then to
get a good seed bed, run two 13-wave coulter behind the shank. This forms a 10-inch wide strip of soil. By turning these two coulter in a little, soil will be thrown to the center.

Spreading manure on bare ground is like putting a blanket on a field. This prevents the soil from warming up and drying out. Try to spread manure on fields that are dry enough so that you can immediately incorporate it. Yesterday, the soil was 60°F the ground was bare and 50°F a foot away under a 1/4” layer of dried manure.

Ramblings: Over spring vacation we took our children to Washington DC. Viewing the historical sites and monuments of our country develops a great appreciation for what we have and an awakening of our responsibilities. We also saw some “cool” sights, like the Wright brother’s plane and the Space Shuttle. To think that only 80 or so years spanned those two flying machines is astounding. From first flight at Kitty Hawk to landing on the moon was all in one life time.

As I apply that to myself, I realize that keeping up with technology and using it effectively is a must. It is a challenge. In my heart, I would rather weed with a well-designed hoe, than spot treat with a GPS controlled nozzle. However, the reality is that we have made great strides of progress and we need to ride the wave. We became a great nation because of our innovation and hard work. Running a business takes similar skills and attitudes.
Assess Alfalfa Stands for Brown Root Rot This Spring

Gary C. Bergstrom and Michael J. Wunsch
Department of Plant Pathology and Plant-Microbe Biology, Cornell University

(What’s Cropping Up,

Brown root rot, caused by the fungus *Phoma sclerotioides*, is a cold-weather disease affecting the roots and crowns of alfalfa during the dormant period when plants are not actively growing. April through early May is the best time to assess over-wintered alfalfa plants for the symptoms and signs of BRR. It is difficult to diagnose BRR in dead plants, but characteristic lesions can be discerned on the roots and crowns of plants showing slow regrowth of shoots from the crown buds in spring. You will need a good shovel or trowel to dig up plants and a bucket of water to rinse off adhering soil for a closer inspection. A pocket knife is useful for slicing through roots to determine the depth of lesions. BRR lesions vary in appearance, but they are generally light to dark brown, often with a darker border. BRR lesions that girdle the upper tap root or the crown result in winterkill. BRR lesions that girdle the lower tap root or affect just part of the root or crown, can lead to reduced plant vigor and slow emergence of alfalfa in the spring. You can be fairly certain that BRR was a factor in poor winter survival and reduced plant vigor when you see characteristic root symptoms on a high percentage of plants in early spring and there are winterkilled plants interspersed with slowly emerging plants in patches scattered across the field. The severity of brown root rot increases as the plants age and experience more winters.

Absolute confirmation of brown root rot requires a molecular laboratory test that is recently available from the Cornell University Plant Disease Diagnostic Clinic (http://plantclinic.cornell.edu/Default.htm for $40 per composite field sample. The result will be yes/no whether the BRR fungus was present at any level in the overall sample. We suggest you call the clinic at 607-255-7850 prior to submission of samples for diagnosis.

First confirmed within New York in Clinton Co. in 2003, BRR is now known to occur throughout New York, Vermont, New Hampshire and Maine. In New York, high incidence levels of the disease have been observed in alfalfa production fields across western, southern tier, and northern parts of the state. The disease is most severe in regions with harsh winters such as in northern New York and northern New England. Many other stresses to alfalfa plants interact with BRR to cause plant death. Winterkill is not a new problem for New York alfalfa producers. The brown root rot fungus may not be new either though our recognition of it in the Northeast is very recent. The widespread finding of BRR in association with winterkill represents an opportunity to reverse one of the main factors that reduces the productivity and longevity of alfalfa in our region. There is no action that an alfalfa producer can take currently to control BRR, but we hope that ongoing research at Cornell University and elsewhere will change that. With support from the Northern New York Agricultural Development Program we are assessing alfalfa varieties adapted to this region in BRR-infested soils in order to identify varieties that may perform better than others in the presence of the BRR fungus.
Figure 1. Range of typical brown root rot symptoms in alfalfa. Note the light to dark brown lesions and the flaky epidermal tissues within the lesions. Photos by Kent Loeffler, Cornell University.