Onion maggot control in onion: can we get off the insecticide treadmill?

Riley Harding and Brian Nault
Cornell University

Cornell AgriTech NEW YORK STATE AGRICULTURAL EXPERIMENT STATION
Onion production on muck in NYS
Onion production on muck in NYS

HIGH IN ORGANIC MATTER
Muck field in production
Onion maggot (*Delia antiqua* Meigen)
Diptera: Anthomyiiidae

- Overwinters as pupa
- Adults emerge springtime
- ≥3 generations per year
- First generation larvae most catastrophic, up to 100% crop loss
- Feed near base onion
Muck field in production
In 2018 a reported 30% loss in yield on one farm
IPM toolbox

CHEMICAL CONTROL

NOVEL TECHNOQUES

CULTURAL CONTROL

IPM

PLANT RESISTANCE

BIOLOGICAL CONTROL
Current Insecticides Labelled

Seed treatments
- FarMore FI500 (thiamethoxam and spinosad)
- Trigard (cyromazine)
- Sepresto 75 WS (clothianidin + imidicoloild)

Drench treatments
- Lorsban (chlorpyrifos)
- Diazinon AG500 (diazinon)
Current Insecticides Labelled

Seed treatments
- FarMore FI500 (thiamethoxam and spinosad)
- Trigard (cyromazine)

Drench treatments
- Lorsban (chlorpyrifos)
- Diazinon AG500 (diazinon)
Current Insecticides Labelled

Seed treatments
- FarMore FI500 (thiamethoxam and spinosad)
- Trigard (cyromazine)

Drench treatments
- Lorsban (chlorpyrifos)
Do growers need Lorsban?
Do growers need Lorsban?

- Criticism of broad spectrum insecticides
Do growers need Lorsban?

†Criticism of broad spectrum insecticides

Review
Worldwide decline of the entomofauna: A review of its drivers
Francisco Sánchez-Bayo†‖, Kris A.G. Wyckhuys††

† School of Life & Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006, Australia
‖ School of Biological Sciences, University of Queensland, Brisbane, Australia
†† Chrysalis, House, Viet Nam
‡ Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
Do growers need Lorsban?

- Criticism of broad spectrum insecticides
- Documented resistance in onion maggot
Do growers need Lorsban?

- Criticism of broad spectrum insecticides
- Documented resistance in onion maggot

Review
Worldwide decline of the entomofauna: A review of its drivers
Francisco Sánchez-Bayo*,1, Kris A.G. Wyckhuys2,3,4
1 School of Life & Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006, Australia
2 School of Biological Sciences, University of Queensland, Brisbane, Australia
3 CIIR-IF, Hanoi, Vietnam
4 Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China

Onion Maggot (Diptera: Anthomyiidae) Resistance to Chlorpyrifos in New York Onion Fields
Brian A. Nault 3, Jian-Zhou Zhao 4, Richard W. Straub 3,
Jan P. Nyrop 3, Mary Lou Hessney 3
Do growers need Lorsban?

- Criticism of broad spectrum insecticides
- Documented resistance in onion maggot
- Threatened with EPA ban
Do growers need Lorsban?

◊ Criticism of broad spectrum insecticides
◊ Documented resistance in onion maggot
◊ Threatened with EPA ban
Objective

To evaluate onion maggot control using insecticide seed treatments alone or in combination with Lorsban
Objective
Objective

 önemli: patlıcan magot kontrolü, Lorsban drenç eklenmesiyle iyileştirebilir.
Materials & Methods

<table>
<thead>
<tr>
<th>Seed Treatment</th>
<th>Lorsban Drench</th>
<th>$n=\pm$ (datasets)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FarMore FI500</td>
<td>±</td>
<td>5</td>
<td>2012-2016</td>
</tr>
<tr>
<td>Trigard</td>
<td>±</td>
<td>26</td>
<td>2002-2016</td>
</tr>
</tbody>
</table>
Materials & Methods

- Plants assessed weekly/bi-weekly for damage by maggot

<table>
<thead>
<tr>
<th>Seed Treatment</th>
<th>Lorsban Drench</th>
<th>n= (datasets)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FarMore FI500</td>
<td>±</td>
<td>5</td>
<td>2012-2016</td>
</tr>
<tr>
<td>Trigard</td>
<td>±</td>
<td>26</td>
<td>2002-2016</td>
</tr>
</tbody>
</table>
Materials & Methods

- Plants assessed weekly/bi-weekly for damage by maggot
- Cumulative % plants killed determined at the end of the 1st generation

<table>
<thead>
<tr>
<th>Seed Treatment</th>
<th>Lorsban Drench</th>
<th>n= (datasets)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FarMore FI500</td>
<td>±</td>
<td>5</td>
<td>2012-2016</td>
</tr>
<tr>
<td>Trigard</td>
<td>±</td>
<td>26</td>
<td>2002-2016</td>
</tr>
</tbody>
</table>
Summary of onion maggot control with **FarMore ± Lorsban** (n=5 data sets from 2012-2016)

Proc MIXED (SAS)
Fixed: TRT
Random: YEAR REP
F = 66.5; df=3, 92; p <0.0001
Summary of onion maggot control with **FarMore±Lorsban** (n=5 data sets from 2012-2016)

Mean % plants killed by maggots

- Untreated
- Lorsban
- FarMore
- FarMore + Lorsban

No benefit of adding Lorsban

Proc MIXED (SAS)
Fixed: TRT
Random: YEAR, REP
F = 66.5; df=3, 92; p < 0.0001
Summary of onion maggot control with **Trigard±Lorsban** (n= 26 data sets from 2002-2016)

Proc MIXED (SAS)
Fixed: TRT
Random: YEAR REP
F= 101.4; df=3, 451; p <0.0001
Summary of onion maggot control with Trigard±Lorsban (n= 26 data sets from 2002-2016)

Proc MIXED (SAS)
Fixed: TRT
Random: YEAR REP
F= 101.4; df=3, 451; p <0.0001
Lorsban is not necessary for FarMore

Lorsban increases efficacy of Trigard
Plan for the future

- We have chemicals that work, but for how long?
- No reported new chemistries in the pipeline from chemical companies
- Re-evaluate other options in case of future control failures
IPM toolbox

CHEMICAL CONTROL

IPM

PLANT RESISTANCE
IPM toolbox

CHEMICAL CONTROL

IPM

PLANT RESISTANCE
IPM toolbox

CHEMICAL CONTROL

IPM

PLANT RESISTANCE

BIOLOGICAL CONTROL
IPM toolbox

CHEMICAL CONTROL

IPM

PLANT RESISTANCE

BIOLGICAL CONTROL
IPM toolbox

CHEMICAL CONTROL

IPM

PLANT RESISTANCE

BIOLOGICAL CONTROL

CULTURAL CONTROL
IPM toolbox

- Chemical Control
- Cultural Control
- IPM
- Biological Control
- Plant Resistance
- Cultural Control
IPM toolbox

CHEMICAL CONTROL

NOVEL TECHNIQUES

CULTURAL CONTROL

IPM

PLANT RESISTANCE

BIOLOGICAL CONTROL
IPM toolbox

CHEMICAL CONTROL

NOVEL TECHNIQUES

PLANT RESISTANCE

BIOLOGICAL CONTROL

CULTURAL CONTROL
Plant Resistance: Other Allium *spp.*

- No known cultivars of bulb onion to confer resistance
- Study in 1996 demonstrated other Allium *spp.* (wild leeks and scallions) to confer resistance to OM damage
- Potential for genetic engineering
Biological control

- Entomopathogenic fungi
 - *Beauvaria bassiana*
- Entomopathogenic nematodes
- Parasitoids (Tomlin et al. 1985)

Repressed *Beauveria bassiana* infections in *Delia antiqua* due to associated microbiota

Fangyuan Zhou, Xiaqing Wu, Letian Xu, Shuhai Guo, Guanhong Chen and Xinjian Zhang

Arthropod Parasitoids and Predators of the Onion Maggot (Diptera: Anthomyiidae) in Southwestern Ontario

A. D. Tomlin, J. J. Miller, C. R. Harris, and J. H. Tolman
Research Centre, Agriculture Canada, University Sub Post Office, London, Ontario N6A 5B7, Canada
Cultural control:

Crop rotation

<table>
<thead>
<tr>
<th>CULTIVARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan Banner '80</td>
</tr>
<tr>
<td>Norstar</td>
</tr>
<tr>
<td>Fortress</td>
</tr>
<tr>
<td>PI 264650</td>
</tr>
<tr>
<td>PI 432715</td>
</tr>
<tr>
<td>PI 432717</td>
</tr>
<tr>
<td>A. fistulosum Shimotae</td>
</tr>
<tr>
<td>Mean<sup>b</sup></td>
</tr>
</tbody>
</table>
Cultural control: Crop rotation

<table>
<thead>
<tr>
<th>% DAMAGED BY MAGGOTS</th>
<th>CULTIVARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ROTATION</td>
<td>Spartan Banner '80</td>
</tr>
<tr>
<td></td>
<td>Norstar</td>
</tr>
<tr>
<td></td>
<td>Fortress</td>
</tr>
<tr>
<td></td>
<td>PI 264650</td>
</tr>
<tr>
<td></td>
<td>PI 432715</td>
</tr>
<tr>
<td></td>
<td>PI 432717</td>
</tr>
<tr>
<td></td>
<td>A. fistulosum Shimotae</td>
</tr>
<tr>
<td></td>
<td>Mean<sup>b</sup></td>
</tr>
</tbody>
</table>
Cultural control:

Crop rotation

<table>
<thead>
<tr>
<th>% DAMAGED BY MAGGOTS</th>
<th>CULTIVARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ROTATION</td>
<td></td>
</tr>
<tr>
<td>91 ± 3</td>
<td>Spartan Banner '80</td>
</tr>
<tr>
<td>99 ± 1*</td>
<td>Norstar</td>
</tr>
<tr>
<td>95 ± 1</td>
<td>Fortress</td>
</tr>
<tr>
<td>93 ± 2</td>
<td>PI 264650</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>PI 432715</td>
</tr>
<tr>
<td>97 ± 2</td>
<td>PI 432717</td>
</tr>
<tr>
<td>75 ± 5</td>
<td>A. fistulosum Shimotae</td>
</tr>
<tr>
<td>89 ± 2a</td>
<td>Meanb</td>
</tr>
</tbody>
</table>
Cultural control: Crop rotation

<table>
<thead>
<tr>
<th>% DAMAGED BY MAGGOTS</th>
<th>CULTIVARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ROTATION</td>
<td></td>
</tr>
<tr>
<td>91 ± 3</td>
<td>Spartan Banner ’80</td>
</tr>
<tr>
<td>95 ± 1</td>
<td>Norstar</td>
</tr>
<tr>
<td>93 ± 2</td>
<td>Fortress</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>PI 264650</td>
</tr>
<tr>
<td>97 ± 2</td>
<td>PI 432715</td>
</tr>
<tr>
<td>75 ± 5</td>
<td>PI 432717</td>
</tr>
<tr>
<td>89 ± 2()</td>
<td>A. fistulosum Shimotae</td>
</tr>
<tr>
<td>Mean(b)</td>
<td></td>
</tr>
</tbody>
</table>
Cultural control:
Crop rotation

<table>
<thead>
<tr>
<th>% DAMAGED BY MAGGOTS</th>
<th>CULTIVARS</th>
<th>% DAMAGED BY MAGGOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ROTATION</td>
<td>ROTATION</td>
<td></td>
</tr>
<tr>
<td>91 ± 3</td>
<td>Spartan Banner '80</td>
<td></td>
</tr>
<tr>
<td>95 ± 1</td>
<td>Norstar</td>
<td></td>
</tr>
<tr>
<td>93 ± 2</td>
<td>Fortress</td>
<td></td>
</tr>
<tr>
<td>91 ± 3</td>
<td>PI 264650</td>
<td></td>
</tr>
<tr>
<td>97 ± 2</td>
<td>PI 432715</td>
<td></td>
</tr>
<tr>
<td>75 ± 5</td>
<td>PI 432717</td>
<td></td>
</tr>
<tr>
<td>89 ± 2a</td>
<td>A. fistulosum Shimotae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meanb</td>
<td></td>
</tr>
</tbody>
</table>
Cultural control:
Crop rotation

<table>
<thead>
<tr>
<th>% Damaged by Maggots</th>
<th>Cultivars</th>
<th>% Damaged by Maggots</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
<td></td>
<td>Rotation</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>Spartan Banner ’80</td>
<td>8.4 ± 2.4</td>
</tr>
<tr>
<td>99 ± 1*</td>
<td>Norstar</td>
<td>16.0 ± 3.7</td>
</tr>
<tr>
<td>95 ± 1</td>
<td>Fortress</td>
<td>13.5 ± 5.8</td>
</tr>
<tr>
<td>93 ± 2</td>
<td>PI 264650</td>
<td>10.2 ± 5.6</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>PI 432715</td>
<td>4.5 ± 1.6</td>
</tr>
<tr>
<td>97 ± 2</td>
<td>PI 432717</td>
<td>8.7 ± 3.6</td>
</tr>
<tr>
<td>75 ± 5</td>
<td>A. fistulosum Shimotae</td>
<td>3.9 ± 1.8</td>
</tr>
<tr>
<td>89 ± 2a</td>
<td>Meanb</td>
<td>9.3 ± 1.5a</td>
</tr>
</tbody>
</table>

* Indicates significant difference from the mean.
Cultural control: Crop rotation

<table>
<thead>
<tr>
<th>% Damaged by Maggots</th>
<th>Cultivars</th>
<th>% Damaged by Maggots</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
<td></td>
<td>Rotation</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>Spartan Banner '80</td>
<td>8.4 ± 2.4</td>
</tr>
<tr>
<td>99 ± 1*</td>
<td>Norstar</td>
<td>16.0 ± 3.7</td>
</tr>
<tr>
<td>95 ± 1</td>
<td>Fortress</td>
<td>13.5 ± 5.8</td>
</tr>
<tr>
<td>93 ± 2</td>
<td>PI 264650</td>
<td>10.2 ± 5.6</td>
</tr>
<tr>
<td>91 ± 3</td>
<td>PI 432715</td>
<td>4.5 ± 1.6</td>
</tr>
<tr>
<td>97 ± 2</td>
<td>PI 432717</td>
<td>8.7 ± 3.6</td>
</tr>
<tr>
<td>75 ± 5</td>
<td>A. fistulosum Shimotae</td>
<td>3.9 ± 1.8</td>
</tr>
<tr>
<td>89 ± 2a</td>
<td>Mean<sup>b</sup></td>
<td>9.3 ± 1.5a</td>
</tr>
</tbody>
</table>
Cultural control:
Crop rotation
Cultural control: Crop rotation

- Study found adoption of a rotation out of Allium decreased damage by onion maggot significantly.

 (Walters et al. 1996)
Cultural control:
 Delay planting

- Moderate (2wk) delay in onion planting reduces damage by onion maggot
- Onion yield not impacted
- Still need to supplement with insecticide
Delaying Onion Planting to Control Onion Maggot (Diptera: Anthomyiidae): Efficacy and Underlying Mechanisms

Brian A. Nault, Benjamin P. Werling, Richard W. Straub, Jan P. Nyrop

Author Notes

Other techniques:
Sterile Insect Technique

- Reduced risk approach implemented in Quebec
Other techniques:
Sterile Insect Technique

- Reduced risk approach implemented in Quebec
- Male flies are sterilized via irradiation
Other techniques:
Sterile Insect Technique

- Reduced risk approach implemented in Quebec
- Male flies are sterilized via irradiation
- Males released to “mate” with wild females and inhibit resident population growths
Other techniques: Sterile Insect Technique

- Reduced risk approach implemented in Quebec
- Male flies are sterilized via irradiation
- Males released to “mate” with wild females and inhibit resident population growths
- 6 yr study, have seen a reduction in onion maggot
Challenges of adopting new tactics

- High value crop; risk of losing crop without insecticidies
Challenges of adopting new tactics

- High value crop; risk of losing crop without insecticides
- Using biologicals in a pesticide intensive system
Challenges of adopting new tactics

- High value crop; risk of losing crop without insecticides
- Using biologicals in a pesticide intensive system
- Cost-effectiveness of novel techniques
Current IPM Strategy

- **Chemical Control**
- **Cultural Control**
- **IPM**
- **Novel Techniques**
- **Plant Resistance**
- **Biological Control**
Goal for IPM in the future

CHEMICAL CONTROL
- Seed treatment options
- Decreased use of broadspectrums

NOVEL TECHNIQUES
- Sterile insect technique

CULTURAL CONTROL
- Crop rotation
- Delay planting

IPM

PLANT RESISTANCE
- GE of bulb onion with traits from scallion and leek

BIOLOGICAL CONTROL
- EPNs
- EPVs
- Parasitoids
Summary

- Reduced chemical options and control
- Criticism of broad-spectrums and decline in entomofauna
- Novel techniques must be employed
- IPM
Zhou et al
Sanchez-Bayo et al
https://www.researchgate.net/publication/291302201_Entomopathogenic_fungi_and_their_role_in_regulation_of_insect_populations
Review

Worldwide decline of the entomofauna: A review of its drivers

Francisco Sánchez-Bayoa*, Kris A.G. Wyckhuysb, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Decline in entomofauna

Review

Worldwide decline of the entomofauna: A review of its drivers

Francisco Sánchez-Bayo¹, Kris A.G. Wyckhuys²

¹School of Life & Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2008, Australia
²School of Biological Sciences, University of Queensland, St Lucia, Australia
³CropLife, Hanoi, Viet Nam
⁴Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
Table 4. Host–parasitoid relationships for several species of Diptera associated with Ontario onion fields

<table>
<thead>
<tr>
<th>Parasitoid</th>
<th>Host</th>
<th>Parasitoid/host ratio</th>
<th>Site</th>
<th>% Parasitism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleochara bilineata (Gyllenhal)</td>
<td>Delta platura (Meigen)</td>
<td>30/271</td>
<td>B, K, L</td>
<td>11.1</td>
</tr>
<tr>
<td>(Coleoptera: Staphylinidae)</td>
<td>(Diptera: Anthomyiidae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. curtula (Goeze)</td>
<td>D. antiqua (Meigen)</td>
<td>0/2,438<sup>a</sup></td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>A. bipustulata (L.)</td>
<td>D. antiqua</td>
<td>1/1,491<sup>a</sup></td>
<td>L</td>
<td>0.07</td>
</tr>
<tr>
<td>Aphaereta pallipes (Say)</td>
<td>D. platura</td>
<td>32/271</td>
<td>B, K, L, T</td>
<td>11.8</td>
</tr>
<tr>
<td>(Hymenoptera: Braconidae)</td>
<td>(Diptera: Anthomyiidae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pallipes</td>
<td>Fannta canicularis (L.)</td>
<td>2/660</td>
<td>L</td>
<td>0.3</td>
</tr>
<tr>
<td>(Diptera: Muscidae)</td>
<td>(Diptera: Muscidae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pallipes</td>
<td>Muscina assimilis (Fallén)</td>
<td>9/173</td>
<td>K, L, T</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>(Diptera: Muscidae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figitis sp. (Hymenoptera: Figitidae)</td>
<td>F. canicularis</td>
<td>61/660</td>
<td>B, K, L, T</td>
<td>9.2</td>
</tr>
<tr>
<td>Phygadeuon sp. (Hymenoptera: Ichneumonidae)</td>
<td>M. assimilis</td>
<td>1/979</td>
<td>B</td>
<td>0.1</td>
</tr>
<tr>
<td>Sphegigaster sp. (Hymenoptera: Pteromalidae)</td>
<td>D. antiqua</td>
<td>1/1,491<sup>a</sup></td>
<td>L</td>
<td>0.07</td>
</tr>
<tr>
<td>Stilpnus sp. (Hymenoptera: Ichneumonidae)</td>
<td>F. canicularis</td>
<td>3/660</td>
<td>B, L, T</td>
<td>0.5</td>
</tr>
</tbody>
</table>

^a These relationships were only scored from July to Sept. of 1981.
Table 4. Host–parasitoid relationships for several species of Diptera associated with Ontario onion fields

<table>
<thead>
<tr>
<th>Parasitoid</th>
<th>Host</th>
<th>Parasitoid/host ratio</th>
<th>Site</th>
<th>% Parasitism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleochara bilineata (Gyllenhall)</td>
<td>Delta platura (Meigen)</td>
<td>30/271</td>
<td>B, K, L</td>
<td>11.1</td>
</tr>
<tr>
<td>(Coleoptera: Staphylinidae)</td>
<td>(Diptera: Anthomyiidae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. curtula (Goeze)</td>
<td>D. antiqua (Meigen)</td>
<td>0/2,438<sup>a</sup></td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>A. bipustulata (L.)</td>
<td>D. antiqua</td>
<td>1/1,491<sup>a</sup></td>
<td>L</td>
<td>0.07</td>
</tr>
<tr>
<td>Aphaeeta pallipes (Say)</td>
<td>D. platura</td>
<td>32/271</td>
<td>B, K, L, T</td>
<td>11.8</td>
</tr>
<tr>
<td>(Hymenoptera: Braconidae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pallipes</td>
<td>Fannia canicularis (L.)</td>
<td>2/660</td>
<td>L</td>
<td>0.3</td>
</tr>
<tr>
<td>(Diptera: Muscidae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pallipes</td>
<td>Muscina assimilis (Fallén)</td>
<td>9/173</td>
<td>K, L, T</td>
<td>5.2</td>
</tr>
<tr>
<td>(Diptera: Muscidae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figitas sp. (Hymenoptera: Figitidae)</td>
<td>F. canicularis</td>
<td>61/660</td>
<td>B, K, L, T</td>
<td>9.2</td>
</tr>
<tr>
<td>Phygadeon sp. (Hymenoptera: Ichneumonidae)</td>
<td>M. assimilis</td>
<td>1/979</td>
<td>B</td>
<td>0.1</td>
</tr>
<tr>
<td>Sphegigaster sp. (Hymenoptera: Pteromalidae)</td>
<td>D. antiqua</td>
<td>1/1,491<sup>a</sup></td>
<td>L</td>
<td>0.07</td>
</tr>
<tr>
<td>Stilpnus sp. (Hymenoptera: Ichneumonidae)</td>
<td>F. canicularis</td>
<td>3/660</td>
<td>B, L, T</td>
<td>0.5</td>
</tr>
</tbody>
</table>

^a These relationships were only scored from July to Sept. of 1981.
Decline in entomofauna: Hymenoptera taking the hit in NA
Background on dry bulb onion in NYS

- $56 million industry NYS
- 7,000 acres planted in 2018
- Predominately grown on muck soils
- Direct-seeded late April
What are other options besides chemical?

- Entomopathogenic viruses (EPVs)
- Sterile Insect Technique, SIT (Fournier unpublished)
- Crop rotation
- Entomopathogenic nematodes (EPNs)
Introduction
Materials & Methods

- Evaluated products in **small plot field trials** throughout NYS from 2002-2016

- 5 data sets that included FarMore FI500 with and w/o Lorsban 26
 data sets that included Trigard with and w/o Lorsban

- Recorded **# plants killed by onion maggot** during first generation

- **Cumulative % damaged plants** determined at the end of the first generation

- Data analyzed using a mixed model in **SAS** with insecticide treatment as a fixed effect and year and rep as random factors
Current Insecticides Labelled

Seed treatments

- FarMore FI500 (thiamethoxam and spinosad)
- Trigard (cyromazine)
- Sepresto 75 WS (clothianidin + imidicicolprid)

Drench treatments

- Lorsban (chlorpyryrifos)
- Diazinon AG500 (diazinon)