Update on insect pest management and Cucumber mosaic virus in snap bean

Processing Snap Bean Advisory Meeting

December 4, 2018

Brian A. Nault
Department of Entomology
Cornell AgriTech
College of Agriculture and Life Sciences
Cornell University
Geneva, NY
Topics

I. Seedcorn maggot/seed treatments

II. Potato leafhopper/OMRI products

III. Aphid activity and CMV incidence
Seedcorn maggot (SCM) (*Delia platura*)

Adult

Nikita Vikrhev

Larva

Joe Ogrodnik

Photo: J. Ogrodnick

Damaged seedlings

Photo: Univ. Minnesota
Risk period for SCM in snaps
Standard SCM management since 2004

planting

[Crusier® 5FS seed treatment]

Days after planting

flower

pin to pod

harvest

bean crop

Cornell AgriTech
New York State Agricultural Experiment Station
SCM management using a seed treatment

Cruiser® 5FS

No insecticide

Photo: B. Nault
SCM management using a seed treatment

➢ If neonicotinoid insecticides (e.g., Cruiser 5FS) and chlorpyrifos (e.g., Lorsban) become unavailable, what alternatives exist for SCM?

➢ Organic options?
SCM management using a seed treatment

➢ If neonicotinoid insecticides (e.g., Cruiser 5FS) and chlorpyrifos (e.g., Lorsban) become unavailable, what alternatives exist for SCM?

Answer: chlorantraniliprole and spinosad, but neither are commercially available

➢ Organic options?

Answer: spinosad…but are there others already labeled?
SPE-120 Soil and Seed Enhancer

• Manufactured by JABB of the Carolinas

• Active ingredient: *Beauvaria bassiana*

• “Natural symbiotic fungus that grows with your plants and defends them against pests and pathogens that attack roots, stems and leaves”

• For **organic** crop production

• Can be applied to seeds, applied in the soil trench and foliar sprayed to enhance plant, leaf, and stem health
OBJECTIVE

• To evaluate a *Beauvaria bassiana*-based-product (SPE-120) delivered as a seed treatment for managing seedcorn maggot (SCM) damage in snap bean
METHODS

Treatments evaluated – 2018

<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>No insecticide</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cruiser 5FS</td>
<td>thiamethoxam</td>
<td>0.84 g/800 g of seed</td>
</tr>
<tr>
<td>SPE-120 (low)</td>
<td>Beauvaria bassiana</td>
<td>70,000 CFU/seed</td>
</tr>
<tr>
<td>SPE-120 (high)</td>
<td>Beauvaria bassiana</td>
<td>700,000 CFU/seed</td>
</tr>
</tbody>
</table>

Note: No fungicide used on seeds; Seeds treated in Alan Taylor’s lab
METHODS

- Planting date: May 25, 2018
- Plots: 2 rows x 20 ft; treatments replicated 6 times
- At planting: bone, fish & meat meal banded over rows
METHODS

- On 7 June 2018 (13 dap), 25 plants systematically sampled to assess number damaged/infested by SCM
RESULTS

Efficacy of seed treatments for SCM management

cv. ‘Huntington’ Geneva, NY 2018

$F_{3, 15} = 4.16; P = 0.0248 \quad n = 6$

Infested/ damaged seedlings (%)

Seed Treatment

- Untreated
- Cruiser 5FS
- SPE-120 (low)
- SPE-120 (high)
SUMMARY

- *Beauvaria bassiana* (SPE-120) failed as a seed treatment for managing seed corn maggot in snap bean.
Potato Leafhopper (PLH) *Empoasca fabae*

Nymph

Adult

Stunting, leaf curling and “hopperburn”
Risk Period for PLH in Snaps
Standard PLH Management since 2004

- Use a systemic insecticide seed treatment
- Apply applications of insecticides to foliage ONLY when needed during bloom

Foliar spray – pyrethroid

Days after planting

Crop

Conventional

Bean crop

0 10 20 30 40 50 60

Flower
Pin to pod

Cruiser® 5FS seed treatment

Cornell AgriTech
New York State Agricultural Experiment Station
PLH Management using a Seed Treatment

No insecticide

Photo: B. Nault

Cruiser® 5FS

Cornell AgriTech
New York State Agricultural Experiment Station
PLH Management using a Seed Treatment

- If neonicotinoid insecticides (e.g., Cruiser 5FS) become unavailable, what alternatives exist for PLH?

- Organic options?
PLH Management using a Seed Treatment

➢ If neonicotinoid insecticides (e.g., Cruiser 5FS) become unavailable, what alternatives exist for PLH?
 Answer: no seed treatments; foliar applications of pyrethroids are available

➢ Organic options?
 Answer: no seed treatments; foliar products available?
OBJECTIVE

• To evaluate foliar applications of [OMRI Listed] products for managing potato leafhopper in snap bean
METHODS

Treatments evaluated – 2018

<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azera</td>
<td>pyrethrin + azadirachtin</td>
<td>40 fl oz/A</td>
</tr>
<tr>
<td>Pyganic Specialty</td>
<td>pyrethrins</td>
<td>0.4% v:v</td>
</tr>
<tr>
<td>Venerate XC</td>
<td>Heat-killed Burkholderia spp. strain A396</td>
<td>2 qts</td>
</tr>
<tr>
<td>Venerate XC</td>
<td>Heat-killed Burkholderia spp. strain A396</td>
<td>4 qts</td>
</tr>
<tr>
<td>Warrior II w/zeon</td>
<td>lambda-cyhalothrin</td>
<td>1.92 fl oz/A</td>
</tr>
</tbody>
</table>

*Note: No insecticide used on seeds; only fungicide
Treatments applied only one time to assess residual activity
RESULTS

Efficacy of one foliar application for PLH management

Sprayed on 3 July

Mean number of nymphs/20 trifoliolate leaves

Date

6-Jul 10-Jul 16-Jul

cv. ‘BA101’

Geneva, NY 2018

- Untreated
- Azera
- Pyganic
- Venerate (low)
- Venerate (high)
- Warrior II w/zeon

Sprayed on 3 July
RESULTS

Efficacy of three foliar applications for PLH management

cv. ‘BA101’ Geneva, NY 2017

Sprayed on 11 July, 16 July and 21 July
SUMMARY

• None of the products were effective when applied only a single time.

• Both Azera and Pyganic applied three times @ 5 day intervals significantly reduced the PLH infestation.
Status of aphid activity and cucumber mosaic virus (CMV) epidemics in snap bean fields

Photo: B. Nault
CMV impact on snap bean yield

Photo: B. Nault

Non-infected

CMV-Infected
Primary vector of CMV – soybean aphid

Aphis glycines
CMV impact on snap bean industry

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated Loss ($)</th>
<th>Year</th>
<th>Estimated Loss ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>2,000,000</td>
<td>2010</td>
<td>limited</td>
</tr>
<tr>
<td>2002</td>
<td>700,000</td>
<td>2011</td>
<td>limited</td>
</tr>
<tr>
<td>2003</td>
<td>1,000,000</td>
<td>2012</td>
<td>limited</td>
</tr>
<tr>
<td>2004</td>
<td>500,000</td>
<td>2013</td>
<td>limited</td>
</tr>
<tr>
<td>2005</td>
<td>1,500,000</td>
<td>2014</td>
<td>limited</td>
</tr>
<tr>
<td>2006</td>
<td>limited</td>
<td>2015</td>
<td>limited</td>
</tr>
<tr>
<td>2007</td>
<td>2,500,000</td>
<td>2016</td>
<td>limited</td>
</tr>
<tr>
<td>2008</td>
<td>limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMV caused over $9 million in losses in a decade (source: Vegetable Processing Industry in New York)
CMV impact on snap bean industry

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated Loss ($)</th>
<th>Year</th>
<th>Estimated Loss ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>2,000,000</td>
<td>2010</td>
<td>limited</td>
</tr>
<tr>
<td>2002</td>
<td>700,000</td>
<td>2011</td>
<td>limited</td>
</tr>
<tr>
<td>2003</td>
<td>1,000,000</td>
<td>2012</td>
<td>limited</td>
</tr>
<tr>
<td>2004</td>
<td>500,000</td>
<td>2013</td>
<td>limited</td>
</tr>
<tr>
<td>2005</td>
<td>1,500,000</td>
<td>2014</td>
<td>limited</td>
</tr>
<tr>
<td>2006</td>
<td>limited</td>
<td>2015</td>
<td>limited</td>
</tr>
<tr>
<td>2007</td>
<td>2,500,000</td>
<td>2016</td>
<td>limited</td>
</tr>
<tr>
<td>2008</td>
<td>limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMV caused over $9 million in losses in a decade (source: Vegetable Processing Industry in New York)
OBJECTIVE

• To monitor activity of winged soybean aphids in snap bean fields

• To assess incidence of CMV in snap bean fields
METHODS

Sampling Aphids
- New York only
- 2017 & 2018
- 3 periods (early, middle and late)
- 4 fields/ period
- 3 traps/ field
- Sampled weekly
- Aphids identified to species

Ceramic tile on bottom + water + soap
Sampling Plants for CMV

- New York & Wisconsin
- NY: n= 46 and 38 fields in 2017 and 2018, respectively; WI: n= 20 fields in 2017 and 2018
- Sampled 500 plants/field (NY); 200 plants/field (WI) at bloom stage
- DAS-ELISA
- (+) was 3x OD reading in negative control
RESULTS
Winged aphid activity

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>No. of winged aphids/ snap bean field/ trap over 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid June – mid July</td>
<td>8 (6-11)</td>
</tr>
<tr>
<td>Mid July – early Aug</td>
<td>17 (3-42)</td>
</tr>
<tr>
<td>Early Aug – early Sept</td>
<td>17 (4-25)</td>
</tr>
</tbody>
</table>
RESULTS

Winged aphid activity

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>2002-2006</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid June – mid July</td>
<td>8 (6-11)</td>
<td>12.6</td>
</tr>
<tr>
<td>Mid July – early Aug</td>
<td>17 (3-42)</td>
<td>1.4</td>
</tr>
<tr>
<td>Early Aug – early Sept</td>
<td>17 (4-25)</td>
<td>13.9</td>
</tr>
</tbody>
</table>
RESULTS

Winged aphid activity

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>2002-2006</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid June – mid July</td>
<td>8 (6-11)</td>
<td>12.6</td>
</tr>
<tr>
<td>Mid July – early Aug</td>
<td>17 (3-42)</td>
<td>1.4</td>
</tr>
<tr>
<td>Early Aug – early Sept</td>
<td>17 (4-25)</td>
<td>13.9</td>
</tr>
</tbody>
</table>

NO soybean aphids!
RESULTS

Incidence of CMV in snap bean fields

<table>
<thead>
<tr>
<th>Year</th>
<th>State</th>
<th>Number of fields in which CMV was detected</th>
<th>Estimated mean incidence of CMV per field</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>New York</td>
<td>1/46</td>
<td>0.004%</td>
</tr>
<tr>
<td></td>
<td>Wisconsin</td>
<td>1/20</td>
<td>0.025%</td>
</tr>
</tbody>
</table>
Snap bean fields infected with CMV in 2017

- 0% infected with CMV
- 1-19% infected with CMV
- 20-100% infected with CMV
CMV impact on snap bean industry

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated Loss ($)*</th>
<th>Year</th>
<th>Estimated Loss ($)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>2,000,000</td>
<td>2010</td>
<td>limited</td>
</tr>
<tr>
<td>2002</td>
<td>700,000</td>
<td>2011</td>
<td>limited</td>
</tr>
<tr>
<td>2003</td>
<td>1,000,000</td>
<td>2012</td>
<td>limited</td>
</tr>
<tr>
<td>2004</td>
<td>500,000</td>
<td>2013</td>
<td>limited</td>
</tr>
<tr>
<td>2005</td>
<td>1,500,000</td>
<td>2014</td>
<td>limited</td>
</tr>
<tr>
<td>2006</td>
<td>limited</td>
<td>2015</td>
<td>limited</td>
</tr>
<tr>
<td>2007</td>
<td>2,500,000</td>
<td>2016</td>
<td>limited</td>
</tr>
<tr>
<td>2008</td>
<td>limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMV caused over $9 million in losses in a decade
(source: Vegetable Processing Industry in New York)

Why? CMV virtually absent, probably because no soybean aphids

Cornell AgriTech
New York State Agricultural Experiment Station
RESULTS

Winged aphid activity

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>2002-2006</th>
<th>2017*</th>
<th>2018**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid June – mid July</td>
<td>8 (6-11)</td>
<td>12.6</td>
<td>128.5</td>
</tr>
<tr>
<td>Mid July – early Aug</td>
<td>17 (3-42)</td>
<td>1.4</td>
<td>24</td>
</tr>
<tr>
<td>Early Aug – early Sept</td>
<td>17 (4-25)</td>
<td>13.9</td>
<td>69</td>
</tr>
</tbody>
</table>

* No soybean aphids in any samples
** Aphids now being identified to species
RESULTS

Incidence of CMV in snap bean fields

<table>
<thead>
<tr>
<th>Year</th>
<th>State</th>
<th>Number of fields in which CMV was detected</th>
<th>Estimated mean incidence of CMV per field</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>New York</td>
<td>1/46</td>
<td>0.004%</td>
</tr>
<tr>
<td></td>
<td>Wisconsin</td>
<td>1/20</td>
<td>0.025%</td>
</tr>
<tr>
<td>2018</td>
<td>New York</td>
<td>22/38</td>
<td>18.7%</td>
</tr>
<tr>
<td></td>
<td>Wisconsin</td>
<td>19/20</td>
<td>47.4%</td>
</tr>
</tbody>
</table>
Snap bean fields infected with CMV in 2018

- 0% infected with CMV
- 1-19% infected with CMV
- 20-100% infected with CMV
SUMMARY

• In 2017, no soybean aphids in NY samples, few in WI samples; CMV virtually absent from snap bean fields in NY and WI

• In 2018, many more aphids in NY and WI (species being identified); CMV was back at high levels in many fields in NY and WI
Future Research

- Continue to monitor aphids and CMV in snap bean fields in NY and WI
- Continue to evaluate novel active ingredients (OMRI-listed) for seedcorn maggot and potato leafhopper control
Acknowledgements

Funding
- New York Vegetable Research Council/Association
- Federal Capacity Funds

Riley Harding & Nault Lab (Cornell - Entomology)

Alan Taylor (Cornell - Horticulture Section)

Masoume Amirkhani (Cornell - Horticulture Section)

Russell Groves (Univ. of Wisconsin)
Soybean aphid dispersal

Spring emigrants search for soybean: May
Summer migrants leave sometime: July - Sept.
Summer migrants land sometime July – Sept.
Summer migrants land sometime July – Sept.

alfalfa

CMV (+)

soybean

Soybean aphid dispersal

Buckthorn

Weeds (+)

snap bean

Buckthorn
Fall migrants search for buckthorn: Sept.
Spring emigrants search for soybean: May
RESULTS – 2018 (NY only)

- 42% (16/38) of snap bean fields had no CMV
- 21% (8/38) of snap bean fields had ~1% plants infected with CMV
- 37% (14/38) of snap bean fields had ~49% plants infected with CMV (range: 4-86%)
RESULTS

Incidence of CMV in snap bean fields

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of fields sampled</th>
<th>Estimated plants infected with CMV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>12</td>
<td>40.7</td>
</tr>
<tr>
<td>2003</td>
<td>12</td>
<td>10.2</td>
</tr>
<tr>
<td>2004</td>
<td>14</td>
<td>4.5</td>
</tr>
<tr>
<td>2005</td>
<td>18<sup>a</sup></td>
<td>47.2</td>
</tr>
<tr>
<td>2006</td>
<td>18<sup>a</sup></td>
<td>1.9</td>
</tr>
<tr>
<td>2007-2016</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2017</td>
<td>66<sup>b</sup></td>
<td>0.007</td>
</tr>
<tr>
<td>2018</td>
<td>58<sup>b</sup></td>
<td>33.1</td>
</tr>
</tbody>
</table>

^a Includes fields from NY and PA

^b Includes fields from NY and WI