Genetic Improvement of Shrub Willow as a Bioenergy Crop

Larry Smart, Associate Professor
SUNY College of Environmental Science & Forestry
Syracuse, New York

lbsmart@esf.edu
www.esf.edu/efb/smart/

© 2007 The Research Foundation of State University of New York
New York State Energy Facts - 2005

• Of New York’s primary energy consumption by Btu:
 - 77% petroleum, natural gas, coal
 - 10% nuclear power
 - 5% hydro
 - 3% bioenergy (wood residues and municipal waste)
 - 5% imported electricity
 . . . costing $2,984 and releasing 12.5 tons of CO₂ per person

• Only 10% of that was supplied by in-state sources

• 90% of petroleum used in NY is from foreign sources
Annual Ethanol Production in the U.S.

Data source: Renewable Fuels Association (http://www.ethanolrfa.org/)
Annual Ethanol Production in the U.S.
“20 in 10” = 20% of petroleum replaced by 2017

Data source: Renewable Fuels Association (http://www.ethanolrfa.org/)
Perennial Energy Crops Will be Grown on 55 M acres by 2030 - to replace 30% of U.S. petroleum consumption

Regional Perennial Energy Crops

Willow Shrubs

Switchgrass
Source: U.S. DOE

Hybrid Poplar
The center of the basket willow industry (ca. 1892) is now a center for growth of shrub willow energy crops.

Harvest of willow stems for basketry
Photo: Liverpool Willow Museum

Harvesting wood chips using a New Holland forage harvester and specialized head.
Genetic Improvement of Shrub Willow as a Bioenergy Crop

Intro to short-rotation willow culture

Breeding and selection for high yield
- *Establish a diverse willow collection*
- *Controlled pollination & hybridization*
- *Selection and field testing for yield*
- *Tech transfer and commercialization*
Willow Biomass Production Cycle

Site preparation

Planting

First-year growth
Willow Biomass Production Cycle

- Site preparation
- Planting
- First-year growth
- Winter Coppice
- Regrowth after coppice
- Three years old after coppice
- One year old after coppice
Willow Biomass Production Cycle

- Winter harvest
- At least 7 harvests
- Three years old after coppice
- One year old after coppice
- Regrowth after coppice
Heat/Power from Willow Wood Chips

- Burn in wood-fired heat/power plants
- Co-fire with coal in existing power plants
- Gasify to generate heat and power

Wood-fired boiler at Lyonsdale Biomass, Lyons Falls, NY
Willow Energy Crops Provide CO₂ Benefits

100% Carbon Closure
(Assumes 0.25 t/ha-yr increase in soil carbon)

Net CO₂ Emissions: 0%

Feedstock Production (62%)
Transportation (12%)
Power Plant Construction (26%)

Genetic Improvement of Shrub Willow as a Bioenergy Crop

Intro to short-rotation willow culture

Breeding and selection for high yield
- Establish a diverse willow collection
- Controlled pollination & hybridization
- Selection and field testing for yield
- Tech transfer and commercialization
Breeding is Likely to Improve Productivity of Willows

A 20% increase in yield reduces cost by 13%

- High genetic diversity
- Little domestication
- Short generation time
- Clonal propagation
- Many species can hybridize
Generalized Willow Breeding Strategy

Breeding Population
- Many clones of 10-15 species

Molecular Techniques
- ongoing
- Nursery screening
- Select parents for breeding

Family Screening Trial
- Many crosses; Single-plant plots
- 2-3 years
- Select, propagate

Selection Trial
- Replicated, multi-plant plots
- 2-4 years
- Select

Yield Trials
More than 600 Accessions Collected: 1994 - 2006

- *S. eriocephala*
- *S. nigra*
- *S. purpurea*
- other *Salix* spp.

Also . . .
Since 1998, more than 600 crosses attempted

- 26 families of *S. purpurea*
- 101 families of *S. eriocephala*
- 91 other families, mainly *S. sachalinensis*, *S. miyabeana*
1999 Family Screening Trial - Syracuse

Two years post-coppice measurements
2002 Genetic Selection Trial
First year post-coppice measurements
Four-plant plots; eight reps; Tully, NY
2002 Genetic Selection Trial
Biomass harvest - Two years post-coppice

• 15 varieties with greater yield than ‘SV1’
• top variety had 40% greater yield than ‘SV1’

- 2006: 1 year post-coppice, Belleville, NY
- 78 plants per plot
- 4 replicate blocks
- 18-30 varieties
- double-row spacing
- hand planted/harvested

★ Tully (2005)
Yield Trials Planted on 12 Sites

- Edmonton, AB (2006)
- Saskatoon, SK (2007)
- Montréal, QC (2007)
- Escanaba, MI (2007)
- Middlebury, VT (2007)
- Waseca, MN (2006)

Also in 2007:
- Loughgall, N. Ireland (2007)

http://sis.agr.gc.ca/cansis/nsdb/climate/hardiness/
Establishing a Commercial Willow Nursery in New York

Double A Vineyards dba Double A Willow (Fredonia, NY) will produce and sell whips for commercial scale-up

Nursery beds doubled each of last three years to >300,000 plants in 2007

(www.doubleawillow.com)
Summary

- Shrub willow is a viable perennial bioenergy crop with established systems for planting, harvesting, transport, and use of willow biomass.

- New varieties produced through traditional breeding generate higher yields than existing varieties.

- Trials have been planted on 12 sites to estimate regional yield potentials.

- New willow bioenergy crop varieties are being deployed commercially in the U.S.
Collaborators and Funding

Dr. Tim Volk
Research Associate

Dr. Larry Abrahamson
Sr. Research Associate

Dr. Kim Cameron
Research Scientist

Dennis Rak (Double A Willow) Ed Priepke (CNH America)

Rich Kopp, Juan Lin, Ingrid Phillips, Michelle Serapiglia,
Jason Purdy, Ken Burns, Mark Appleby, many undergraduates...