Organization of the Crop Rotation Computer Program

The software is based on a Microsoft Excel Version 7.0 platform that operates under Windows 95. It runs most efficiently when 16 meg are available. The program has been developed for the Michigan Nutrient Management Planning System, and is intended to be used to optimize crop rotations.

This paper will present an overview of the crop rotation program, using the Michigan Nutrient Management System for the corn-soybean rotation. The goal of the program is to develop a computer program that can be used to optimize crop rotations.

Introduction

Regional Crop & Soil Specialist
Cornell Cooperative Extension of Penfield County
Thomas E. Kilger

Optimizing Crop Rotations

Application of the Cornell Nutrient Management Planning System.
The accident in the plant was asked to be in 4 years of the other half of the month.

The results obtained in the evaluation and the evaluation of the model.

Application of the methodology of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.

The results obtained in the evaluation and the evaluation of the model.
The diagram shows the need for feed and storage capacities on a farm. The needs are calculated based on the production requirements and the farm's capacity to store crops. The diagram includes a table that outlines the details of feed and storage requirements. The table provides information on crop types, feed needs, and storage capacities. The data is essential for planning and managing the farm's resources efficiently.
McMahan Farm Balance

<table>
<thead>
<tr>
<th></th>
<th>Feed Needs</th>
<th>Crop Supplies</th>
<th>Sale</th>
<th>Home Grown</th>
<th>Fertilizer Needs</th>
<th>Debt</th>
<th>Mower Hours</th>
<th>Home Grown Fencing</th>
<th>Meals</th>
<th>Fuel</th>
<th>Total Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/18</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181/1</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>54</td>
<td>54</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td>564</td>
<td>564</td>
<td></td>
<td>564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/18</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181/1</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>54</td>
<td>54</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1934</td>
<td>564</td>
<td>564</td>
<td></td>
<td>564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. New Whole Farm Balance

Figure 1. Trade-off Diagram

The new crop program based on what is best for the soil, where the corn is now actually a slight crop, is very short on corn silage shortage (26%) as shown in figure 1. The impact of this program on the storage% is in the original level minus 2.

References


Summary

The computer program has the potential to improve farm profitability through the development of the silage and the use of storage components. The program can help to increase the corn silage shortage and reduce the nutrient requirements. The program can help to increase the corn silage shortage and reduce the nutrient requirements.