Motivation

- Design reliable and cost-effective composite wind turbine blades considering wind load uncertainty and manufacturing variability for 20-year operation at various locations.

Objective

- Develop reliability-based design optimization (RBDO) of composite wind turbine blades for fatigue life considering wind load uncertainty and manufacturing variability.
- Obtain RBDO optimum design which minimizes cost and satisfies reliability requirement for 20-year operation.

Methodology

- Dynamic Wind Load Uncertainty Model
 - Measured Wind Speed Data
 - Joint PDF of V_{10} & I_{10} Determined by (C, k, a, b, τ) (Annual Wind Load Variation)
 - Distribution of Probability of Wind Condition (i.e., V_{10} & I_{10})
 - Dynamic Wind Load Uncertainty Model

- Manufacturing Variability Model

- Accurate Surrogate Models for 10-Minute Fatigue Damage

- RBDO Flowchart
 - RBDO Initial Design
 - Check Hotspot
 - After Four Iterations?
 - Create Local Surrogate Models of 10-minute Fatigue Damages at Selected Hotspots
 - MCS of 10-minute Fatigue Damages Evaluated Using Local Surrogate Models
 - MCS of 20-year Fatigue Damages for Probabilistic Constraints
 - Reliability Analysis Using MSC & Sensitivity Analysis Using Score Functions
 - Matlab Optimizer
 - RBDO Optimizer
 - Optimization Converged?
 - Check Hotspot
 - RBDO Optimum Design
 - New Hotspot Found?
 - Yes

Application

- Parametric FE Model of a 5 MW Composite Blade
 - Variables:
 - Material Distribution
 - Layer Thickness
 - No. of Layers

- Wind Pressure Calculation for FEA
 - Given V_{10} & I_{10}

- Fatigue Damage Evaluation under Complex Stress State
 - Experimental Fatigue Data

- RBDO of The Composite Wind Turbine Blade
 - Random design variables: 7 normalized laminate thicknesses
 - Objective: total composite material cost
 - Constraints: $P(\text{Fatigue Life < 20 Years}) \leq P^\text{ref} = 2.275\%$
 - (9 hotspots → 10 hotspots)

- RBDO Results
 - d_1, d_2, d_3, d_4, d_5, d_6, d_7 Normalized Cost Probability of Failure Mass (ton)
 - RBDO Initial
 - 1.133 1.571 1.818 1.299 1.115 1.091 0.867 1.03 2.28% 24.192
 - RBDO Optimum
 - 1

Conclusions

- Developed RBDO of composite wind turbine blades for reliability considering wind load uncertainty and manufacturing variability for 20-year operation.
- Optimized for cost-effective and reliable wind turbine blade using RBDO.

Future Work

- RBDO of other wind turbine components, e.g., gear and bearing, considering wind load uncertainty and manufacturing variability.